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1 Introduction.

We condider coupled networks of neural spiking cells whose dynamivcal behavior is governed, at the individual
level, according to conductance-based neuronal models. The complete system is made of a set of networks. Cells
in a given network have the same dynamical features but these later may vary from one network to another
one. The neuronal models of the basic units enable the characterization of the states of the individual neu-
rons and in particular provide the means to determine the times of occurence of spikes. In addition to sets of
dynamical variables consisting of activation and inactivation variables for ionic channel and calcium concentra-
tion, the individual neurons are endowed with a spatial structure in the form of a dendritic tree attached to soma.

The networks we consider are large and, moreover, are subject to noisy disturbances of the white noise type.
We have shown in [6] that it is possible to construct a mean �eld theory for such systems. In fact, in [6], the
neural systems are punctual. Here we generalize the framework of this kinetic theory to neural systems with
a dendritic tree structure. This mean �eld theory makes it possible to construct, for these coupled networks,
a system of non-linear, partial integrodi�erential equations for the probability distributions of all the dynamic
variables of the system (membrane and dendritic potentials, ion channel and connection variables).

The gain in computing time, in numerical resolution of these systems, in the transition from a very large
number of coupled stochastic equations controlling individual dynamics to a smaller number of equations for
probability distributions can be important. This analysis is developed here �rstly within the general framework
of any number of coupled networks. Then, an example of application of this method which treats the mammalian
basal ganglia system is presented. The latter is made up of up and down spiny neurons of the striatum, the
internal and external globus pallidus networks, the subthalamic nucleus, the substantia nigra pars compacta
and �nally a group of fast spiking interneurons from the striatum. The system of integrodi�erential equations
for the probability distributions of this set of networks is presented. Numerical resolution is then carried out
for some of its subsets. The objective aimed here is to show that modeling including a signi�cant part of the
biologically plausible characteristics of cells can be proposed in the case where the neuronal populations are of
large size, this being able to be done without having recourse to the necessity, di�cult to apprehend , usually
encountered, of solving huge systems of coupled (stochastic) di�erential equations.
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2 A dynamical system for coupled large-scale biologically plausible

neuronal networks.

We consider coupled neworks of spiking cells whose dynamical behavior is governed, at the individual level,
according to conductance-based neuronal models. The complete system is made of P networks of cells, where
all neurons in a given population Pγ , γ = 1, 2..P have the same dynamical features but these later may vary
from one population to another one. In what follows, the number of cells in Pγ is called Kγ .....

2.1 The cellular model in Pγ: mγ dimensional ionic variables, dγ dimensional

compartmental dendritic arborescence structure.

In this section, we de�ne the neuronal models which are the basic units of the networks. Such models enable the
characterization of the states of the individual neurons and in particular provide the means to determine the
times of occurrence of spikes. In addition to mγ dynamical variables consisting of activation and inactivation
variables for ionic channels and calcium ion concentrations, the individual neurons are endowed with a spatial
structure in the form of a dendritic tree attached to a soma. A typical form of the dendritic trees, which is
ascribed a dimensionality dγ , is shown in Fig. 
1. The state variables of each celli i = 1, 2, . . . ,Kγ in Pγ are

its membrane soma potential V γi , a mγ-dimensional set of recovery gating variables R̂γi which control the ionic

channels activity and a dγ-dimensional multicompartmental vector Ỹ γi which describes the potential values in

the various parts of the arborescent dendritic structure. We call Iγ(V γi , Ỹ
γ
i , R̂

γ
i ) (resp. Ξ̃γ(V γi , Ỹ

γ
i , R̂

γ
i ) ) the

sum of ionic, active channels and passive leak, transverse (resp. transverse and longitudinal) currents across
(resp. across and along) the membrane of the soma (resp. multicompartments dendritic tree) of the ith cell

in Pγ . Moreover, the dynamical laws for variables R̂γi are de�ned in terms of a mγ dimensional vector valued

function Ψ̂γ(V γi , Ỹ
γ
i , R̂

γ
i ). The synaptic inputs on celli which are distributed on the soma and the dendritic

compartments are denoted Is,γi,syn(t) and Ĩd,γi,syn(t). External currents may also be applied on somas and dendritic

compartments of all cells of the network. They are composed of a deterministic part (Is,γext and Ĩd,γext ) and a
stochastic part. Finally, the dynamic system controlling the activity of the cells of the system has the following
form, Cγs (resp. Cγd )being the transmembrane capacitance of the somas (resp. dendrites).

dV γi
dt

=(1/Cγs )
{
Iγ(V γi , Ỹ

γ
i , R̂

γ
i ) + Is,γi,syn(t) + Is,γext(t)

}
+ ηγi,t (1)

dỸ γi
dt

=(1/Cγd )
{

Ξ̃γ(V γi , Ỹ
γ
i , R̂

γ
i ) + Ĩd,γi,syn(t) + Ĩd,γext(t)

}
(2)

dR̂γi
dt

=Ψ̂γ(V γi , Ỹ
γ
i , R̂

γ
i ) (3)

where ηγi,t is a white noise such that

〈ηγi,sη
γ
j,t〉 = δij δ(s− t)βγi , i, j = 1, 2, . . . ,Kγ , (4)

Moreover, δij is the Kronecker symbol, δ(·) is the delta distribution and βγi i = 1, 2, . . . ,Kγ are noise parameters.
We assume that the deterministic parts of the currents and the noise parameters are the same for all neurons
in each given population.
In the following, the system of (stochastic) coupled di�erential equations (1), (2), (3) will be called SCDE.

2.2 The dendritic structure.

Let us introduce the dendritic function Ξ̃γ(V γi , Ỹ
γ
i , R̂

γ
i ) which appears in (2), for an arbitrary cell, in an

arbitrary population Pγ , γ = 1, 2..P . The index i is therefore omitted. The potential at the trigger somatic

zone is denoted by V γ . The mγ-dimensional set of recovery gating variables is denoted R̂γ . Finally, we call Ỹ γ

a dγ-dimensional multicompartments dendritic potential vector. The vector Ỹ γ has the representation

Ỹ γ = ({Ỹ γi1}i1 , {Ỹ
γ
i1i2
}i1i2 , ..., {Ỹ

γ
i1i2...ik

}i1i2...ik , ...), i1 = 1...Q1, i2 = 1, ...Q2
i1
, i3 = 1, ...Q3

i1i2
, ... The nearest

(connected to the trigger zone compartment) �rst level compartments, are represented by Ỹ γi1 , i1 = 1, 2, . . . , Q1

where Q1 is the number of these compartments. In Fig. 
1,Q1 = 3. The notation Ỹ γi1i2 , i2 = 1, 2, . . . , Q2
i1
is used

for the compartments which are connected to this �st level compartments. In Fig. 
1, Q2
1 = 2, Q2

2 = 2, Q2
3 = 2.
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Higher branches are similarly characterized (Q3
11 = 3, Q3

12 = 3, Q3
21 = 1, and so on). For a model with maximum

number of branching levels B, the compartmental variables at this level are called Ỹ γi1i2...iB . In Fig. 
1, B = 5.
Transmembrane conductance of compartment i1i2...ik is denoted αi1i2...ik . Junctional conductances between
compartments i1i2...ik and i1i2...ik+1 are called ζi1i2...ik,i1i2...ik+1

.
Using these notations, for a compartment which is neither the soma nor a terminal one, we have

d

dt
Ỹ γi1i2...ik = −αi1i2...ik Ỹ

γ
i1i2...ik

+ ζi1i2...ik−1,i1i2...ik(Ỹ γi1i2...ik−1
− Ỹ γi1i2...ik)

(5)

+

Qk+1
i1i2...ik∑
j=1

ζi1i2...ik,i1i2...ikj(Ỹ
γ
i1i2...ikj

− Ỹ γi1i2...ik) + Ĩchi1i2...ik(Ỹ γi1i2...ik , R̂
γ)

For the proximal compartments, xxxx.
Introduce capacitance, xxxx
For the K terminal compartments, one has

d

dt
Ỹ γi1i2...ib = −αi1i2...ib Ỹ

γ
i1i2...ib

+ ζi1i2...ib−1,i1i2...ib(Ỹ
γ
i1i2...ib−1

− Ỹ γi1i2...ib)

+ Ĩchi1i2...ib(Ỹ
γ
i1i2...ib

, R̂γ) b = b1, . . . , bK (6)

To be reviewed here: xxxxxFinally, the sum N(V γ , Ỹ γ) of all longitudinal currents coming from the proximal
part of the dendritic tree to the soma has the following form

N(V γ , Ỹ γ) =

Q1∑
i1=1

αi1(V γ − Ỹ γi1/Ci1) (7)

This current contributes to Iγ(V γ , Ỹ γ , R̂γ) considered in (1). In (5) (resp. (6)), Ĩchi1i2...ik(V γ , R̂γ) (resp.

Ĩchi1i2...ib(V
γ , R̂γ)) is the ionic channels active transfert current accross compartment i1i2...ik (resp. i1i2...ib). In

(7), Ci1 is the capacitance of compartment i1 = 1...Q1. The right side of (5), (6) constitute the building block

of the function Ξ̃γ(V γi , Ỹ
γ
i , R̂

γ
i ) which has been introduced in (2).

Figure 1 � A typical multicompartments structure

2.3 The inhomogeneous time dependant synaptic interactions model in the system

of connected networks Pγ, γ = 1, 2..P .

For the jth cell in Pγ , γ = 1, 2..P , we introduce 3 types of synaptic variables. Some of these variables, which

are called Ss,γj and Sd,γj , where s and d refer to the soma and dendritic structure of the cell, are useful for
the description of the various neurotransmitter mechanisms occuring in the contacts. In the following, we deal
with well known neurotransmitters present in cortical neurons and the basal ganglia structure, like glutamate
(Glu),γ-aminobutyric acid (GABA), acetylcholine (ACh) and dopamine (DA). We introduce also another type
of synaptic variable which is called Φγj , for the j

th cell in Pγ . These variables are introduced in order to have
some control on the dynamical change of the maximum amplitudes of the synaptic conductances which may
occur in cells which will be considered later, like the spiny neurons in the striatum nucleus. The general form
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for the synaptic currents occuring in the soma body and dendritic compartmental arborescence of the ith cell
in Pγ , I

s,γ
i,syn(t) and Ĩd,γi,syn(t), is the following

Is,γi,syn(t) =

P∑
α=1

1

Kα
(W s,(γ,α) − V γi )

Kα∑
j=1

Γs,(γ,α)(Φγi ,Φ
α
j )Ss,αj (8)

Ĩd,γi,syn(t) =

P∑
α=1

1

Kα
(W̃ d,(γ,α) − Ỹ γi )

Kα∑
j=1

Γd,(γ,α)(Φγi ,Φ
α
j )Sd,αj (9)

In (8) and (9), W s,γ , W̃ d,γ are given synaptic potential valued parameters, Γs,d,(γ,α) which are maximum
amplitudes of the synaptic conductances, are functions of synaptic variables Φγi and Φαj . In order to specify the

way in which the synaptic variables Ss,γj , Sd,γj and Φγj evolve, we introduce the sigmoidal function σs,dΘ which is

de�ned in terms of the parameters Us,dΘ and βs,d

σs,dΘ (u) = (1 + e−β
s,d(u−Us,dΘ ))−1 (10)

In (10), the variable u can designate the membrane potential of soma or that of a dendritic compartment.

We introduce the following functions L s,d,α(V αj , Ỹ
α
j ) of the soma potential V αj , and the dentritic potential Ỹ αj

of the jth presynaptic cell of the network Pα.
{
Ỹ αj
}
k
means the kth dendritic compartment of the cell.

L s,d,α(V αj , Ỹ
α
j ) =χs,d,ασs,dΘ (V αj ) +

dα∑
k=1

τs,d,αk σs,dΘ (
{
Ỹ αj
}
k
) (11)

α = 1, 2, . . . , P j = 1, 2, . . . ,Kα

In (11), χs,α, τs,αk (resp. χd,α, τd,αk ) are real parameters which are a�liated to presynaptic somas (resp.
dendritic compartments). These L s,d,α functions are introduced in order to detect presynaptic events linked
to an activity of su�ciently high amplitude compared to the values of the equilibrium membrane potential.

Figure 2 � A rough picture of the connexion model

The dynamical law for the synaptic variables Ss,αj and Sd,αj is postulated of the form

d

dt
Ss,αj = L s,α(V αj , Ỹ

α
j )(1− Ss,αj )− κsSs,αj = Υs,α(V αj , Ỹ

α
j , S

s,α
j )

d

dt
Sd,αj = L d,α(V αj , Ỹ

α
j )(1− Sd,αj )− κdSd,αj = Υd,α(V αj , Ỹ

α
j , S

d,α
j ) (12)

α = 1, 2, . . . , P j = 1, 2, . . . ,Kα

The coupling coe�cients Γs,d,(γ,α) in (8), (9) are variable over time and depend on the state of the pre and
post synaptic cells according to the following Hebbian form

Γs,d,(γ,α)(Φγi ,Φ
α
j ) = Js,d,(γ,α)Φγi Φαj (13)

The variation of the synaptic variables Φγi , γ = 1, .., P is modeled in the following way
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dΦνj
dt

= Ων(V νj , Ỹ
ν
j ,Φ

ν
j ) (14)

In the case where these functions Ων = 0, the variables Φγi are in fact constant, therefore the coupling coef-
�cients between cells are constant. These networks have a homogeneous structure. In the case where Ων 6= 0,
the networks are inhomogeneous, the coupling coe�cients are variable over time. In summary, the synaptic
currents in the formulas (8), (9) have an evolution associated with the states of the membrane potential of the
pre and post synaptic cells of the coupled networks, this evolution being also associated with the variations of
the other synaptic variables introduced which verify the equations (14).

Actually, all synaptic dynamical laws de�ned in (23) and (14) may be rewritten in a more concise form, with

Q̌αj = (Ss,αj , Sd,αj ,Φαj ) and Θ̌α = (Υs,α,Υd,α,Ωα)

d

dt
Q̌αj = Θ̌α(V αj , Ỹ

α
j , Q̌

α
j ) (15)

2.4 The mean �eld approach for coupled networks Pγ, γ = 1, 2..P .

We have shown ( [6]) that it is possible to construct a mean �eld theory for large-scale neural networks of the
type considered in the previous sections, whose monocellular characteristics are described by conductance based
systems and whose inhomogeneous synaptic interactions can evolve with time. Actually, in [6], the neuronal
model is punctual, with no dendritic structure. We now generalize the framework of this kinetic approach to
neural systems with a dendritic tree and more elaborate synaptic connexions.

The variables Zγk = (V γk , Ỹ
γ
k , R̂

γ
k , Q̌

γ
k), Zγk ∈ Rdγ+mγ+4, k = 1, 2, . . . ,Kγ , γ = 1, 2, . . . , P , are called state

variables of the system.

Let us de�ne Fγ , M γα and ζγ by

Fγ(Zγi ) = ((1/Cγs )
{
Iγ(V γi , Ỹ

γ
i , R̂

γ
i ) + Is,γext(t)

}
, (1/Cγd )

{
Ξ̃γ(V γi , Ỹ

γ
i , R̂

γ
i ) + Ĩd,γext(t)

}
,

Ψ̂γ(V γi , Ỹ
γ
i , R̂

γ
i ), Θ̌γ(V γi , Ỹ

γ
i , Q̌

γ
i )) (16)

M γα(Zγi , Z
α
j ) = ((1/Cγs )Js,(γ,α)Φγi Φαj (W s,(γ,α) − V γi )Ss,αj ,

(1/Cγd )Jd,(γ,α)Φγi Φαj (W̃ d,(γ,α) − Ỹ γi )Sd,αj , 0̂ , 0̌ )

ζγi,t = (ηγi,t, 0̃ , 0̂ , 0̌ )

0̃ (resp.0̂ ) being the null vector in Rdγ (resp.Rmγ ). The vectors Fγ , M γα and ζγ belong to Rdγ+mγ+4. With
these notations, the dynamical system describing the activity of the neural system constituted by P connected
networks Pγ , γ = 1, 2..P is the following:

dZγi
dt

= Fγ(Zγi ) + ζγi,t +

P∑
α=1

1

Kα

Kα∑
j=1

M γα(Zγi , Z
α
j ) i = 1, 2, . . . ,Kγ , γ = 1, 2, . . . , P. (17)

In order to elaborate the kinetic theory of the system, we �rst de�ne a concept of neural probability dis-
tribution for each networkPγ and derive a system of coupled non-linear, integropartial di�erential equations
(IPDE) for these distributions. The solutions of these systems of equations called McKean Vlasov Fokker Planck
(MVFP) are useful for obtaining statistical measures describing the activity of these networks in the case where
they are of large size.

Let us denote nγt (U) the neural population probability distributions (PPD) for the networks Pγ , γ = 1, 2..P ,
these distributions satisfy the following system of IPDEs (see Appendix 5)

∂

∂t
nγt (U) = − ∂

∂U
(Fγ(U)nγt (U))− ∂

∂U

P∑
α=1

∫
Rdα+mα+4

dU ′M γα(U,U ′)nγt (U)nαt (U ′) +
1

2
(βγV )2 ∂

2

∂v2
nγt (U) (18)

γ = 1, 2, . . . , P, U = (v, ỹ, r̂, q̌), v ∈ R, q̌ = (S s,S d, φ) ∈ R3, ỹ ∈ Rdγ , r̂ ∈ Rmγ , (19)

U ′ = (v′, ỹ′, r̂′, q̌′), v′ ∈ R, q̌′ = (S s′,S d′, φ′) ∈ R3, ỹ′ ∈ Rdα , r̂′ ∈ Rmα . (20)
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The variable v (resp. ỹ, r̂, q̌) has soma potential (resp. compartmental dendritic potential, ionic channel gating,
synaptic) meaning for cells in Pγ . Let us write the equation (18) in terms of the functionals introduced in (16).

∂

∂t
nγt (v, ỹ, r̂, q̌) =− (1/Cγs )

∂

∂v

{
(Iγ(v, ỹ, r̂) + Is,γext(t))n

γ
t (v, ỹ, r̂, q̌)

}
− (1/Cγd )

∂

∂ỹ

{
(Ξ̃γ(v, ỹ, r̂) + Ĩd,γext(t))n

γ
t (v, ỹ, r̂, q̌)

}
− ∂

∂r̂

{
Ψ̂γ(v, ỹ, r̂)nγt (v, ỹ, r̂, q̌)

}
− ∂

∂q̌

{
Θ̌γ(v, ỹ, q̌)nγt (v, ỹ, r̂, q̌)

}
− (1/Cγs )

∂

∂v

{
φnγt (v, ỹ, r̂, q̌)

P∑
α=1

Js,(γ,α)(W s,(γ,α) − v)Eαt (ΦSs)
}

(21)

− (1/Cγd )
∂

∂ỹ

{
φnγt (v, ỹ, r̂, q̌)

P∑
α=1

Jd,(γ,α)(W̃ d,(γ,α) − ỹ)Eαt (ΦSd)
}

+
1

2
(βγV )2 ∂

2

∂v2
nγt (v, ỹ, r̂, q̌)

The coupling terms have been written in terms of expectations Eαt of functionals evaluated in the state space
Rdα+mα+4, at time t.

Eαt (ΦSs,d) =

∫
Rdα+mα+4

dv ′dỹ′dr̂′dq̌′φ′S s,d′nαt (v′, ỹ′, r̂′, q̌′) (22)

3 The mean �eld for the basal ganglia network.

Figure 3 � A rough picture of the basal ganglia network, ref

The dynamical law for the synaptic variables Ss,αj and Sd,αj is postulated of the form

d

dt
Ss,αj = L s,α(V αj , Ỹ

α
j )(1− Ss,αj )− κsSs,αj = Υs,α(V αj , Ỹ

α
j , S

s,α
j )

d

dt
Sd,αj = L d,α(V αj , Ỹ

α
j )(1− Sd,αj )− κdSd,αj = Υd,α(V αj , Ỹ

α
j , S

d,α
j ) (23)

α = 1, 2, . . . , P j = 1, 2, . . . ,Kα

In the following, the general system of MVFP equations for large-scale interacting networks of biologicaly
neurons, which has been presented in section 2.4, is applied for a model of basal ganglia XXXXXXXX. Although
the system is in principle dedicated to dendritic architectures of any dimension (this in the context of the
multicompartmental approximation), this organization will be reduced for certain cells of the networks that we
will consider, to a very simple description consisting of a single dendritic compartment associated with a soma
and its axon, for other cells, the dendritic structure will only consist of a very limited number of compartments
whereas for other cells, the will consist only of a soma and its axon. On the other hand, another simplifying
hypothesis will be made at the level of the dynamics of neuromediator transfers. A general model is proposed
for these dynamics, the parameters which characterize them which vary according to the mediators considered.
The basal ganglia organization model that we are considering also calls for simplifying hypotheses. The proposed
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scheme is however considered useful (refs) in the understanding of many mechanisms putting the nuclei of this
system into action. This later includes:

� P1, the subset of striatum (Str) cells which express the D1 dopamine receptor

� P2, the subset of striatum (Str) cells which express the D2 dopamine receptor

� P3, the internal globus pallidus (GPi)

� P4, the external globus pallidus (GPe)

� P5, the subthalamic nucleus (STN)

� P6, the substantia nigra pars compacta (SNc)

� P7, fast spiking (FS) interneurons connected to D1 cells

� P8, fast spiking (FS) interneurons connected to D2 cells

The general current goes from the cortex to the basal ganglia, where the striatum constitutes the entry path
while the GPi is the main exit points to the ipsilateral motor thalamic nuclei V A and V L, which returns to
the premotor cortex (and additional motor area) responsible for programming the movement.

The wiring among these nuclei is usually described in the following terms [32] ,see also Fig. 4.

a) The striatopallidal pathway is a GABAergic, inhibitory connection between the striatum and both seg-
ments of the globus pallidus, GPe and GPi. The medium spiny neurons (MSN) make up a large part of the
striatum. These MSNs have radially projecting dendrites that are densely studded with dendritic spines ( [8]).
These projection neurons of the striatum have two di�erent peptide transmitters being co-localized to de�ne
two sets of MSNs, which are called above P2 and P3. The �rst of these groups of MSNs project directly to
the GPi while the other group of MSNs projects to the GPe.

b)The nigrostriatal pathway from SNc makes a dopaminergic synapse onto striatal neurons. This is a mixed
pathway, with excitatory e�ects on D1 striatal neurons and inhibitory e�ects on D2 striatal cells.

c)The GPe segment makes a GABAergic, inhibitory connection to the STN .
d) The STN makes glutamatergic excitatory connections onto the GPi.
e) The FS interneurons XXXXXXX

In what follows, we will focus more speci�cally on the role played by this system in processing cortical
information of a general nature and its structure at the output of the GPi. We will not consider the processing
of this �nal signal by the cortico thalamic unit.

3.1 Two pathways process signals in the basal ganglia

There are two important pathways through which striatal information, coming from the cortex, reaches GPi -
the direct pathway and the indirect pathway.These two pathways have opposite e�ects on motor activity and
help explain many clinical symptoms of basal ganglia diseases.

� Direct pathway.
In the direct pathway, striatal cells project directly to GPi. Using this pathway results in an increase in
the excitatory drive from V A and V L to cortex. Actually, cells in GPi have inhibitory action on thalamic
nuclei, through GABA transmitters. Striatal cells, which are activated through glutamergic transmitters from
cortex, also have an inhibitory action, in this pathway, on the GPi, through GABA trnsmitters. This results
in a decrease in the inhibitory activity of GPi on V A/V L, which acts as an excitatory (or dis-inhibition)
e�ect. Finally, activation of this pathway leads to increased �ring of the cells of V A/V L and therefore of
those of the motor cortex, see Fig. 5.

� Indirect pathway.
In the indirect pathway, cortical �bers excite striatal neurons that project to GPe. The increased activity of
the GABAergic striatal neurons decreases activity in GPe. The GABAergic cells in Gpe inhibit cells in STN ,
so the decrease in activity in GPe results in less inhibition of cells in STN . That is, subthalmic neurons
are dis-inhibited and increase their activity. The projection from STN to GPi is excitatory, so the increased
activity in the subthalamic nucleus results in more excitation to cells in GPi. Thus, the end result of actions
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(a) Schematic representation of the direct and indirect
pathways in the basal ganglia circuit and dopamine pro-
jections. Neurotransmitters : Glu (Glutamate), DA
(Dopamine), GABA ( Gamma-AminoButyric Acid).

(b) Simpli�ed organization of the basal ganglia connectiv-
ity. Exc (resp. Inh): excitatory (resp. inhibitory) connex-
ions. Regulation from SNc on D1 and D2 dopaminergic
receptors in striatum.

Figure 4 � XXXX.

(a) Direct pathway. (b) Indirect pathway.

Figure 5 � XXXX.

of the indirect loop is an increase in activity of the GABAergic cells in GPi that project to V A/V L namely
an increase in inhibition of the thalamic neurons.The indirect pathway turns down the motor thalamus and,
in turn, motor cortex. Thus, it turns down motor activity, see Fig. 5.

� Dopaminergic modulation of direct and indirect pathways.
Striatal neurons are modulated by two important dopaminergic neuro modulatory systems. Each of these
systems di�erentially a�ects the direct and indirect pathways, thereby altering their balance and the amount
of motor activity that is produced. Dopamine is produced by cells in the pars compacta of the substantia
nigra pars compacta (SNc). Nigrostriatal axon terminals release dopamine into the striatum. Dopamine
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has an excitatory e�ect upon cells in the striatum that are part of the direct pathway, via D1 receptors.
Dopamine has an inhibitory e�ect upon striatal cells associated with the indirect pathway, via D2 receptors.
Thus, the direct pathway (which turns up motor activity) is excited by dopamine while the indirect pathway
(which turns down motor activity) is inhibited. Both of these e�ects lead to increased motor activity, see
Fig. 6.

(a) Dopaminergic paths. (b) Fast spiking interneurons (FSI) paths.

Figure 6 � XXXX.

� Action of FS interneurons on direct and indirect pathways.

XXXXXXX

3.2 The dynamical systems for the various basal ganglia subnets.

In this section, we describe the various ingredients introduced in general equations (16) allowing to analyze the
dynamics of the networks of the basal ganglia made up of the networks Pγ , γ = 1, 2..8. In a �rst step, the
dynamical models of the individual cells in each Pγ are presented.

3.2.1 The model of D1 and D2 medium spiny neurons (MSN) of the striatum ( [2], [4]) (networks
P1 and P2).

The networks P1 and P2 consist of medium spiny neurons (MSN) of the striatum which represent the major
part of this nucleus in the subcortical basal ganglia of the forebrain. The essential feature of these cells is the
alternating variation of membrane potential between a rest level (down) state and a more depolarized level (up)
state ( [3]). The MSNs being GABAergic, they inhibit their targets of SNpc (P1). As inputs level on MSNs,
one has datas from the cerebral cortex and informations by dopaminergic pathways from the SNpc. Indeed,
MSNs have dopamine receptors. The latter inhibits the MSNs (type D2) in the indirect way and excites the
MSNs (type D1) in the direct way.

� Model for soma potential dynamics. The temporal evolution of MSN cells is described by a cellular model
of the same type as that developed by Gruber, Solla, Surmeier and Houk ( [2]). We have added to this
model a dendritic structure which is treated according to a multi-compartmental approach (see section 2.2).
Three dendritic compartments are considered. A proximal, connected to the soma, for which the membrane
potential is described by the variable y1. Two other compartments are connected in parallel to the proximal,

9



Figure 7 � A schematic representation of the connectivity system of a spiny neuron in striatum.

for which the potential variables are denoted y11 and y12. Using the notations introduced in section 2.1,
ỹ = (y1, y11, y12).

As in ( [4]), the membrane of a MSN soma is modeled with Hodgkin Huxley type dynamics for active
ionic currents. Goldman-Hodgkin-Katz type dynamics (GHK) are used for calcium currents.They are called
IL−Ca, are linearly dependent on the concentration of intra- and extracellular calcium [Ca]in and [Ca]ext,
and not linearly dependent on the membrane potential.Two types of ionic currents are considered, IKir and
IKsi for which the conductances are potential dependent. It is also introduced a leakage current IL with
a constant conductance. Finally, in order to describe the spiking activity, for variations of the membrane
potential of MSNs in the up state, it is proposed here the introduction of Sodium and Potassium currents
INa and IK which are treated in the classical Hodgkin Huxley formalism.
For this model, the number of variables describing the voltage-gated ions channels activity is m2 = 3.

These variables are the action-inactivation variables which are denoted m,n, h and which are useful for the
description of INa and IK currents. We call r̂ = (m,n, h). The sum of ionic, active channels and passive leak,
transverse currents across the membrane of the soma of MSNs cells I1(v, y1, r̂) has the following form, with
gd1(y1 − v) being the longitudinal current coming from the proximal compartment

Ik(v, y1, r̂) = −(IKir(v) + IKsi(v) + IL−Ca(v) + INa(v,m, h) + IK(v, n) + IL(v)) + gd1(y1 − v) (24)

k = 1, 2 (25)

with

IKir(v) =ĝKir(v − EKir)/(1.0 + exp(−(v − Vh1)/Vc1))

IKsi(v) =ĝKsi(v − EKsi)/(1.0 + exp(−(v − Vh2)/Vc2)) (26)

IL(v) =ĝL(v − EL)

IL−Ca(v) =γ(v)PL−Ca(v)

where γ(v) = (z2F 2v/RT )([Ca]i − [Ca]extexp(−zFv/RT ))/(1− exp(−zFv/RT )).
v is the membrane potential of a MSN cell, z is the valence of the Ca++ ions, F is Faraday's constant,
T is the temperature, R is the gas constant.[Ca]i (resp.[Ca]ext) is intra (resp.extra) cellular Calcium ions
concentrations and the voltage dependent membrane permeability is given by

PL−Ca(v) = P̂L−Ca/(1.0 + exp(−(v − VCa−h)/VCa−c)) (27)

In relations (26)-(27), EKir, EKsi and EL are reversal potentials, ĝKir, ĝKsi, ĝL are maximum conductances,

Vh1,Vc1, Vh2, Vc2, VCa−h, VCa−c are constants. P̂L−Ca is the maximum permeability.

Moreover, the Sodium and Potassium currents, INa(v,m, h) and IK(v, n), are such that

INa(v,m, h) =ĝNam
3h(v − VNa)

IK(v, n) =ĝKn
4(v − VK) (28)
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while Ψ̂k(v, r̂), k = 1, 2 which controls the voltage-gated channels dynamics, are the 3-components functions
which have the following structure

Ψk
i (v, r̂) = αi(v)(1− χi)− βi(v)χi i = 1, .., 3 (29)

χ1 = m,χ2 = n, χ3 = h

k = 1, 2

see ?? for the de�nition of αi(v), βi(v), i = 1, .., 3.

The MSN cells have the particularity of having two operating states, an up state, for which the membrane
potential variation is in the neighborhood of −60mV , where a spiking activity can take place and a down
state, for which variations are around −85mV .The process of passage from one state to another, under the
action of synaptic perturbations, can be analyzed by �rst considering the single-cell dynamics. For a given
constant synaptic conductance gsyn, corresponding to an input current Isyn = gsyn(v − ES), where ES is a
�xed reversal potential, �rst of all the stationary values Vstat of the system (26)-(27) are determined, to which
the input has been added. These values should check the relationship

I (Vstat) =IKir(Vstat) + IKsi(Vstat) + IL−Ca(Vstat) + ĝNam∞(Vstat)
3h∞(Vstat)(Vstat − VNa) (30)

+ ĝKn∞(Vstat)
4(Vstat − VK) + IL(Vstat) + gsyn(Vstat − ES) = 0 (31)

where m∞, n∞, h∞ are asymptotic values of m,n, h. Fig. 
8 shows the behavior of I (v) for di�erent values
of gsyn. For gsyn = gmin and gsyn = gmax, the curves are tangent to the v axis. For gmin < gsyn < gmax,
the relation (31) has 3 solutions, 2 of which correspond to stable equilibrium points and 1 an unstable
equilibrium.The diagram of equilibrium points according to parameter gsyn is shown in Fig. 
8. It indicates a
bifurcation between states with low equilibrium values (down states) and states with higher values (up states),
when gsyn varies.The system is now subject to synaptic inputs Gsyn(t) with strong temporal variations in a
domain near the [gmin, gmax] interval. A typical example of synaptic signal is shown in Fig. 
8.
The synaptic input model Gsyn(t) is built in the following way. First, a temporal division {ti} i = 1, .., Ninp is
built such that ∆ti = ti+1 − ti = ζ where ζ = U (0, δ) is a continuous random variable uniformly distributed
on [0, δ]. Let Γ(t), a continuous function, whose variations are bounded. Using the temporal division {ti} i =
1, .., Ninp, we construct a set of values

{
ampli = gmin + (1/2)(gmax − gmin)(1 + Γ(ti) + ξ)

}
i=1,..,Ninp

where

ξ = U (0, φ). Gsyn(t) is then obtained by linear interpolations between the values {ampli}i=1,..,Ninp . In Fig. 
8,
Γ(t) = Γmax(sin(ω1t) + cos(ω2t) + sin(ω3t)) where ωi = 2π/Ti, i = 1, .., 3.

The response of an MSN cell to this kind of input is shown in Fig. 
8 where a switchover occurs alternately
from an up state (possibly producing spikes) to a down state as variations of Gsyn(t) occur.
See Appendix 4 for the values of the various parameters used in the MSN cells simulations.

� Model for dendritic potential dynamics.

In the dendritic model of potential activity which is presented below, only the proximal compartment is
provided with ion channels having potential dependent active properties. These channels are of the same
type as those considered for soma. The associated current is therefore

Ich(y1, r̂) = −(IKir(y1) + IKsi(y1) + IL−Ca(y1) + INa(y1,m, h) + IK(y1, n))

The set of passive, transverse and longitudinal currents across and along the membrane of the dendritic
compartments, as well as the active properties across the proximal compartment, is described by the three
dimensional vectors Ξ̃k(v, ỹ, r̂), k = 1, 2 whose components are.

Ξk1(v, ỹ, r̂) =− gd1(y1 − v)− (gd + gd11 + gd12)(y1 − EL)

+ gd11(y11 − EL) + gd12(y12 − EL) + Ich(y1, r̂)

Ξk2(v, ỹ, r̂) =gd11(y1 − EL)− (gd + gd11)(y11 − EL) (32)

Ξk3(v, ỹ, r̂) =gd12(y1 − EL)− (gd + gd12)(y12 − EL)

k = 1, 2

The parameters EL are equilibium values and gd, gd1, gd11, gd12 have the following meaning, (see 2.2). gd is the
capacitance, assumed identical for each compartment, for the transverse current through these compartments.
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gd1 is the conductance for longitudinal current between the proximal compartment and the soma, gd11, gd12

are conductances for longitudinal current between each parallel compartment and the proximal one.

(a) I (v) curves for di�erent constant synaptic
conductances.

(b) Bifurcation diagram.

(c) Synaptic conductance variations. (d) Membrane potential variations.

Figure 8 � Dynamical behaviour of one isolated MSN cell subjected to corticostriatal synaptic inputs, modi�ed
from Gruber et al. ( [2]).

3.2.2 The Guo Rubin model ( [5]) of the neuronal states in internal, external globus pallidus
and subthalamic networks GPi, GPe and STN (P3..P5).

The dynamics of the GPi, GPe and STN cells that make up the P3,P4 and P5 networks are governed by
conductance-based , single -compartment systems originally developed by Guo and Rubin ( [5]).

� Internal globus pallidus neurons in GPi (P3).

For the model that describes the activity of GPi cells, the variables h, n, u, [Ca] are needed to describe the
voltage-gated ion channels including calcium activity. We call r̂ = ([Ca], h, n, u).The sum of ionic, active
channels and passive leak, transverse currents across the membrane of the soma I3(v, , r̂) of the GPi cells
have the following forms:

I3(v, r̂) = −(INa(v, h) + IK(v, n) + IT (v, u) + ICa(v) + IAHP (v, [Ca]) + IL(v)) (33)

with

INa(v, h) =gNa m∞(v)
3
h (v − VNa)

IK(v, n) =gK n4 (v − VK))

IT (v, u) =gTa∞(v)
3
u (v − VCa) (34)

ICa(v) =gCas∞(v)
2
(v − VCa)

IAHP (v, [Ca]) =gAHP ([Ca]/([Ca] + k)) (v − VK)

IL(v) =gL (v − VL)

Moreover, Ψ̂3(v, r̂) which controls the voltage-gated channels dynamics, is the 4-components function which
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has the following structure

Ψ3
1(v, [Ca], u) =ε

{
− ICa(v)− IT (v, u)− kCa[Ca]

}
Ψ3

2(v, h) = Φh(h∞(v)− h)/τh(v) (35)

Ψ3
3(v, n) = Φn(n∞(v)− n)/τn(v)

Ψ3
4(v, u) = Φu(u∞(v)− u)/τu

with

X∞(v) =1/(1 + e−(v−θX)/σX ) (36)

X =h, n, u,m, a, s

τX(v) =τ0
X + τ1

X/(1 + e−(v−θτX)/στX ) X = h, n

Figure 9 � Bursting activity of isolated GPi cells under external irregular input currents
from Guo and Rubin ( [5]).

� External globus pallidus neurons in GPe (P4).

The activity of GPe cells is treated using the same variables and equations as for GPi cells, with the same
parameters. Thus, the sum of ionic, active channels and passive leak, transverse currents across the membrane
of the soma I4(v, , r̂) of the GPe cells have the following forms

I4(v, r̂) = −(INa(v, h) + IK(v, n) + IT (v, u) + ICa(v) + IAHP (v, [Ca]) + IL(v)) (37)

� Subthalamic nucleus network STN (P5).

The dynamics of STN cells is modeled by the same system of equations as that corresponding to the networks
GPi and GPe, except for the current IT and the parameter τu(v) ) which is a constant for the cells of GPi
and GPe in (36) and which is not constant for the cells of the STN . These new parameter functions are

IT (v, u) =gTa∞(v)
3
b∞(u) (v − VCa)

τu(v) =τ0
u + τ1

u/(1 + e−(v−θτu)/στu) (38)

with

b∞(u) = 1/(1 + e−(u−θb)/σb)− 1/(1 + e−θb/σb) (39)

See Appendix 4 for the values of the various parameters used in the GPi, GPe and STN network simulations.

3.2.3 The Li Bertram Rinzel model ( [1]) of dopaminergic bursting cells in the Sbustantia Nigra
pars compacta (network P6).

The network P6 is built of dopaminergic cells in Sbustantia Nigra pars compacta (SNc) whose dynamical
behaviour is governed by a system which is adapted from a model orginally developed by Li, Bertram and Rinzel
( [1]). It is made of two compartments, a soma compartment and a dendritic compartment that represents the
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distal dendrites, lumped together. So, in this case, d6 = 1. For this model, the number of variables needed
to describe the voltage-gated ion channels activity is m6 = 6. These variables include the concentration of
Calcium [Ca] in the soma, the concentration of Sodium [Na] in the dendrite, action-inactivation variables
denoted h, n,mT , hT . We call r̂ = (h, n,mT , hT , [Ca], [Na]). The sum of ionic, active channels and passive
leak, transverse currents across the membrane of the soma I6(v, y1, r̂) and across the membrane of the dendrite
Ξ6(v, y1, r̂), have the following forms

I6(v, y1, r̂) =− INa,S(v, h)− ICa−T (v,mT , hT )

− IKDRS(v, n)− IK(Ca)(v, [Ca])− gc/pDA(v − y1) (40)

Ξ6(v, y1, r̂) =− IKDRD(y1, n)− INMDA(y1)

− Ipump([Na])− IL(y1)− gc/(1− pDA)(y1 − v)

with

INaS(v, h) =gNa m∞(v)
3
h (v − VNa)

ICa−T (v,mT , hT ) =gCaT m
2
T hT (v − VCa)

IKDRS(v, n) =gKDRS n
2 (v − VK) (41)

IK(Ca)(v, [Ca]) =gK(Ca) ([Ca]4/([Ca]4 +K4
Ca)) (v − VK)

m∞(v) = 1/
{

(1 + exp(−(v + 35)/6.2)}

and with

IKDRD(y1, n) =gKDRD n2 (y1 − VK)

INMDA(y1) =CondNMDA(y1) (y1 − VNMDA)

CondNMDA(y1) =gNMDA

{
1 + [Mg++]0/KMg exp(−y1/q)

}−1

Ipump([Na]) =Rpump(Γ([Na])− Γ([Na], eq)) (42)

Γ([Na]) =[Na]3/([Na]3 +K3
p)

IL(y1) = gL(y1 − VL)

Moreover, Ψ̂6(v, y1, r̂) which controls the voltage-gated channels dynamics, is the 6-components function which
has the following structure

Ψ6
1(v, y1, r̂) =α

{
− INa,NMDA(y1)− 3Ipump([Na])

}
(43)

Ψ6
2(v, y1, r̂) =− βICa−T (v,mT , hT )− kCa[Ca] (44)

Ψ6
i (v, y1, r̂) =1/τi(v)(w∞,i(v)− wi) i = 3, .., 6 (45)

w3 = h,w4 = n,w5 = mT , w6 = hT

with

INaNMDA(y1) =gNaNMDA

{
1 + [Mg++]0/KMg exp(−y1/q)

}−1
(y1 − VNa) (46)

and

ν3(v) =νh(v) =

{
0.4
{

1 + 2/(1 + exp((v + 25)/5))
}}−1

w∞,h(v) =1/
{

1 + exp((v + 30)/8.3)
}

ν4(v) =νn(v) = (1 + exp(−(v + 70)/10))/
{

0.8(1 + 2/(1 + exp((v + 25)/10)))
}

(47)

w∞,n(v) =1/
{

1 + exp(−(v + 31)/5.3)
}

ν5(v) =νmT (v) = 1

w∞,mT (v) =1/
{

1 + exp(−(v + 55)/7)
}

ν6(v) =νhT (v) = 0.1

w∞,hT (v) =1/
{

1 + exp((v + 81)/11)
}

See Appendix 4 for the values of the various parameters used in the DA cells simulations in Fig. 11.
XXXXXXXXComments on �gures here.
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(a) Somatic membrane potential.
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(b) Dendritic membrane potential.

Figure 10 � Bursting activity of isalated autonomous DA cells, kCa = 1.0.
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(b) Dendritic membrane potential.

Figure 11 � Bursting activity of isalated autonomous DA cells, kCa = 1.5, from Li et al. ( [1]).

3.2.4 The Golomb, Donner, Shacham, Shlosberg, Amitai, Hansel model ( [36]) of striatal fast
spiking (FS) interneurons (networks P7 and P8 ).

The P7 and P8 networks of FS interneurons in the striatum are made up of cells whose evolution of the
membrane potential was modeled by Golomb and his collaborators. This model is made of a single somatic
compartment while the number of variables describing the activity of the channels is m7 = m8 = 4. The
equation of the current balance is

Ik(v, r̂) =− INa(v, h)− IKdr(v, n)− Id(v, a, b)− gL(v − VL) (48)

k = 7, 8

where v is the membrane potential of the soma, INa is the Na+ current for which the gating variable m is
instantaneous, reaching the value dependent potential limit m∞ and h evolves according to a Hodgkin Huxley
type dynamic (HH) potential dependent. On the other hand, IKdr is a delayed recti�er Potassium current, the
HH gating variable being n. Finally, a potassium current Id, which has a fast activation and a slow inactivation,
is expressed in terms of the gating variableq a and b (70) .. In addition, using our notations (see []), the Psik
functions .....

INa(v, h) = gNam
3
∞(v)h(v − VNa)

IKdr(v, n) = gKdrn
2(v − VK) (49)

Id(v, a, b) = gda
3b(v − VK)

with

m∞(v) = {1 + exp(−(v − θm)/σm)}−1 (50)
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In addition, (see (3)), the 4-components functions Ψ̂k(v, r̂), k = 7, 8, which control the voltage-gated channels
dynamics, have the following form

Ψk
i (v, r̂) = (wi,∞(v)− wi)/τi(v) i = 1, .., 4 (51)

w1 = h,w2 = n,w3 = a,w4 = b, k = 7, 8

with

(wi,∞(v) = {1 + exp(−(v − θwi)/σwi)}−1 i = 1, .., 4

w1 = h,w2 = n,w3 = a,w4 = b

τh(v) = 0.5 + 14{1 + exp(−(v − θth)/σth)}−1 (52)

τn(v) =

{
0.087 + 11.4/

{
1 + exp((v + 14.6)/8.6)

}}{
0.087 + 11.4/

{
1 + exp(−(v − 1.3)/18.7)

}}
τa(v) = τa, τb(v) = τb

See Appendix 4 for the values of the various parameters used in the FS interneurons simulations.
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(a) No noise, a step current (IExt(t) = 3.0µA/cm2) is ap-
plied. Depolarization of the membrane potential but no pro-
duction of action potentials.
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(b) No noise, a step current (IExt(t) = 3.2µA/cm2) is ap-
plied. Emergence of a delayed tonic �ring.
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(c) A step current (IExt(t) = 3.0µA/cm2) is applied. A
noise of amplitude XX causes the appearance of an

irregular activity in bursts of spikes.
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(d) For IExt(t) = 3.2µA/cm2 and a noise of the same
amplitude, the irregular bursting activity is more intense.

Figure 12 � Noise induced activity of FSI cells from Golomb et al.( [36]).

3.3 The connectivity model of the basal ganglia.

In this section, wel introduce the ingredients useful for the characterization of the various synaptic currents
between cells of the same population and between cells of di�erent populations. The sigmîdal functions (10)
and the κs parameters in (23) were chosen identical for all the contacts.
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3.3.1 Interactions in Str between D1MSN cells in P1 and D2MSN cells in P2.

The MSN cell model of the striatum that we are considering consists of a soma and a 3-compartment dendritic
system. Referring to the general expression of synaptic currents (8) (9), the following parameters are introduced
in order to describe the interactions between D1MSN cells of P1, between D2MSN cells of P2, and between
P1 cells and P2 cells (Fig. 13) : W s(1,1),W s(2,2),W s(1,2),W s(2,1) are "equilibrium" XX values used to specify
the excitatory or inhibitory nature of the connection, synaptic contacts taking place on the soma of postsynaptic
cells. W̃ d,(1,1), W̃ d,(2,2), W̃ d,(1,2), W̃ d,(2,1) are vectors with 3 components of the" equilibrium" XX values (for
synaptic contacts taking place on the dendrites of postsynaptic cells).
D1MSN and D2MSN cells are GABAergic. Equations (23) model the transfers of GABA neuromediators.

The L s,d functions (11), which enter into the dynamics of the synaptic variables S s,γ
j and S d,γ

j (for the

jth cell, γ = 1, 2), through these equations, are de�ned using the following parameters : χs,1, χs,2, χd,1, χd,2,

τs,1k , τs,2k , τd,1k , τd,2k k = 1, 2, 3. These are real parameters which are a�liated to somas and dendritic compart-
ments. For these later, they are taken identical.
Finally, the connection system of MSN cells in the striatum is completed by a Hebbian approach to the maxi-
mum values of synaptic conductances Γs,(γ,α), Γd,(γ,α) γ = 1, 2, which are time dependent. The latter have the
form

Γs,(γ,α)(Φγi ,Φ
α
j ) = Js,(γ,α)Φγi Φαj i = 1, 2, . . . ,Kγ , j = 1, 2, . . . ,Kα α, γ = 1, 2 (53)

The law of evolution of variables Φγi which was formulated in general in (14), takes the following form, for
the ith MSN cell in P1 and the jth MSN cell in P2

Ω1(V 1
i ,Φ

1
i ) = −α1Φ1

i + β1σs(V 1
i )

Ω2(V 2
j ,Φ

2
j ) = −α2Φ2

j + β2σs(V 2
j ) (54)

(55)

where σs is a sigmoïdal function of the same type as in 10, αγ , βγ , γ = 1, 2 being real parameters. For all
the other cells in the Basal Ganglia system, the Φγj variables, are in fact considered to be constant over time,

for γ = 3, .., 7 and each jth cell.

(a) Coupling between D1MSN and
D2MSN cells in striatum under cortical
input.

(b) Interactions between SNc and STr. (c) Interneurons model.

Figure 13 � XXXX.
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3.3.2 Interactions between D1MSN cells (P1) and D2MSN cells (P2) with SNc cells (P6) and
interneurons (P7 and P8).

The connection model between SNc cells (resp. interneurons) and D1MSN (resp. D2MSN) cells is a more
simple model than that considered in the previous section insofar as the connections between cells are made at
the somas level (Fig. 13). Connections between SNc cell (resp. interneurons) somas and dendritic compartments
of D1MSN (resp. D2MSN) cells are not considered. The parameters which control the dopaminergic (resp.
cholinergic) character of the transmission originating from SNc cells (resp. interneurons) and projecting onto
D1MSN (resp. D2MSN) cells are noted, following (8), (11): for the equilibrium values, achieving the excitatory
or inhibitory character of the connection, W s,(1,6) (resp. W s,(2,6)) for SNc connections, W s,(1,7) (resp. W s,(2,7))
and W s,(1,8) (resp. W s,(2,8)) for interneurons connections. The parameters of the L s,d functions for SNc
connections are χs,6. They are χs,7 and χs,8 for interneurons connections. These later parameters are identical,
in each case, for the D1MSN and D2MSN cells.

3.3.3 Interactions between D1MSN,D2MSN cells in Str and cells of GPi (P3).

Firstly, let us consider the direct pathway between Str and GPi. As in the previous section, the connectivity
model between D1MSN and GPi cells comes down to contacts taking place at the somas of the 2 types of cells
(Fig. 14).The parameters used to provide D1MSN cells with GABAergic properties are W s,(3,1) and χs,1, this
later is the parameter for the corresponding L s,d function.

Along the indirect pathway, the transmission between D2MSN cells and those of GPe (P4) is also done
in a GABAergic manner. Here, the parameters are W s,(4,2) and χs,2. Between GPe and STN (P5), the
neuromediators are also GABA. The parameters are W s,(5,4) and χs,4. Finally, between STN (P5) and GPi
(P3), the connection is Glutamergic. The settings here are W s,(3,5) and χs,5 (see (Fig. 14)).
The various characteristics of the neural subnetworks of the simpli�ed system of the Basal Ganglia having been
presented, we give in what follows an application of the general method (section ( ??)) allowing to obtain
informations, within the framework of approximations due to noises of small amplitude called DSAM , on the
evolution of statistical quantities such as mean values, variances, covariances of state variables such as membrane
potential of somas, dendritic compartments or indeed activation and inactivation variables of ionic channels of
the various types of cells considered in the constitution of the system. Recall that the DSAM method is based
on a set approach of the mean �eld type where the various subsystems are made up of a very large number
of cells. Finally, the procedure followed will be that of �nding relations, along the rules of DSAM , between
cortical entries into the striatum and outputs taking place at the GPi level.

(a) Indirect pathway. (b) Direct pathway.

Figure 14 � XXXX.
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4 Numerics and parameter settings.

Numerical simulations were performed using double precision �oating point arithmetic on a Intel Xeon computer
with 32 processors. Euler's method was used to solve the system of stochastic di�erential equations (1)-(3),
with a time step δt = 0.01s. The ordinary di�erential equations of the DSAM system (approximate moments)
were solved using a 4th order RungeKutta method, with the same time step. The number of cells for the P1

and P2 networks has been set at K1 = K2 = 100 while the number of trials is Ntrials = 50.
The means and variances were evaluated according to the same scheme as described in [6]. In the evaluation

of the various moments calculated from the DSAM system, the di�culty lies essentially in the appearance
of divergences occurring after a time that generally corresponds to a relatively limited number of patterns.
However, these discrepancies can be controlled by a detailed analysis of the initial conditions. When this
control is obtained, the comparison of the computation times required to solve DSAM and stochastic systems
is clearly to the advantage of the �rst method.

For example, for 2 coupled systems such as P1 and P2, consisting of K1 = K2 = 100 cells, with a
number of dendritic compartments of small size (d1 = 1, d2 = 3) and ionic variables in relatively small number
(m1 = 6,m2 = 2), the number of random equations is (d1 + m1 + 1) ∗ K1 + (d2 + m2 + 1) ∗ K2, to which
are added (K1 + K2) equations for the connection variables. Finally, the number of equations to be solved is∑2
γ=1(dγ +mγ + 2) ∗Kγ ∗Ntrials = 80000. The DSAM system, for a Pγ network, consists of 5 + 3(dγ +mγ) +

1
2dγ(dγ + 1) + dγmγ + 1

2mγ(mγ + 1) equations, i.e. for the coupled P1 and P2 networks system, 89 equations.

� Parameters for D1MSN and D2MSN cells in Striatum, P1 and P2.

Neuromodulatory factors: µ = 6.0, ζ = 0.05. C1
s = C2

s = 1µF/cm2, ĝKir = µ1.2mS/cm2, ĝKsi =
0.5mS/cm2, ĝL = 0.3mS/cm2. EKir = −90mV,EKsi = −90mV,EL = −75mV,Es = 20mV . Vh1 =
−110mV, Vc1 = −11mV, Vh2 = −13.5mV, Vc2 = 11.8mV . T = 310.16K, [Ca]i = 10pmol/cm3, [Ca]ext =

2µmol/cm3. P̂L−Ca = µ4.2nm/s, VCa−h = −34mV, VCa−c = 6.1mV . ĝNa = ζ120mS/cm2, ĝK = ζ10mS/cm2,
VNa = 50mV, VK = −77mV , δ = 20ms,Ninp = 500. gmin = 0.01mS/cm2, gmax = 0.05mS/cm2.
Γmax = 0.3, φ = 0.008. T1 = 2s, T2 = 1.1s, T3 = 0.5s.
XXXmol ==>? M

� Parameters for cells in the internal and external globus pallidus GPi and GPe, P3 and P4.

C3
s = C4

s = 1µF/cm2, gL = 0.1mS/cm2, gNa = 120mS/cm2, gK = 30mS/cm2, gT = 0.5mS/cm2, gCa =
120mS/cm2, gAHP = 30mS/cm2, vL = −55mV, vNa = 55mV, vK = −80mV, vCa = 120mV , τ0

n = 0.05ms,
τ0
h = 0.05ms, τ1

n = 0.27ms, τ1
h = 0.27ms, τu = 30ms. στn = −12mV, στh = −12mV, θτn = −40mV ,

θτh = −40mV . σm = 10mV, σn = 14mV, σh = −12mV, σu = −2mV, σa = 2mV, σs = 2mV . φu =
1, φn = 0.1, φh = 0.05, kCa = 15XXX, k = 30XXX, ε = 0.0001XXX, θu = −70mV, θm = −37mV, θn =
−50mV, θh = −58mV, θs = −35mV, θa = −57mV,

� Parameters for cells in the subthalamic nucleus STN , P5.

C5
s = 1µF/cm2, gL = 2.25mS/cm2, gNa = 37.5mS/cm2, gK = 45mS/cm2, gT = 0.5mS/cm2, gCa = 0.5mS/cm2,

gAHP = 9mS/cm2, vL = −60mV, vNa = 55mV, vK = −80mV, vCa = 140mV , τ0
n = 1ms,

τ0
h = 1ms, τ1

n = 100ms, τ1
h = 500ms, τ0

u = 7.1ms, τ1
u = 17.5ms. στn = −26mV, στh = −3mV, θτn = −80mV, στu =

−2.2mV , θτh = −57mV . σm = 15mV, σn = 8mV, σh = −3.1mV, σu = −2mV, σa = 7.8mV, σs = 8mV, σb =
0.07. φu = 1, φn = 0.1, φh = 0.05, kCa = 15XX, k = 30XX, ε = 0.0001XX, θu = −67mV, θm = −30mV, θn =
−32mV, θh = −39mV, θs = −39mV, θa = −63mV, θb = 0.25, θτu = 68mV,

� Parameters for DA cells in the substantia nigra pars compacta SNc, P6.

The soma and dendritic membranes have the same speci�c capacitance C6
s = C6

d = 1µF/cm2. gNa =
3.2mS/cm2, gCaT = 1.5mS/cm2, gKDRS = 3.2mS/cm2, gK(Ca) = 1.2mS/cm2, gc = 0.1mS/cm2, gKDRD =
0.14mS/cm2, gNMDA = 1.25mS/cm2, gL = 0.18mS/cm2 are conductancesXX, VNa = 50mV, VCa = 120mV, VK =
−85mV, q = 12.5mV , VNMDA = 0mV , VL = −50mV are equilibrium values XX, KCa = 0.4µM, [Mg++]0 =
1.4mM,KMg = 10mM , Rpump = 18µA/cm2, Γ([Na], eq) = 8mM , α = 0.173mM.cm2/µA.s,
β = 0.104µM.cm2/µA.s, kCa = 1s−1.
The coupling current parameter between soma and dendrite in DA cells, is pDA = 0.35.

� Parameters for FS interneurons in Striatum, P7 and P8.

C7
s = C8

s = 1µF/cm2, gL = 0.25mS/cm2, VL = −70mV, gNa = 112.5mS/cm2, VNa = 50mV, θm = −24.0mV <===
XXXXX,σm = 11.5mV, θh = −58.”mV, σh = −6.7mV, θth = −60mV, σth = −12mV, gKdr = 225mS/cm2, VK =
−90mV, θn = −12.4mV, σn = 6.8mV, θa = −50mV, σa = 20mV, τa = 2ms, θb = −70mV, σb = −6mV, τb =
150ms, gd = 0.5mS/cm2 <==== XXXXX.
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5 Appendix: The mean �eld equations.

Let us denote by
pt((Z

α
i )i,α) = pt((Z

1
i )i=1,2,...,K1

, . . . , (ZPj )j=1,2,··· ,KP ) (56)

the joint probability distribution of the stochastic variables (Zαi )i,α = (Zαi )
α=1,2,...,P
i=1,2,...,Kα

.
The Fokker Planck equation for the system (17) is

∂

∂t
pt((Z

α
i )i,α) = −

P∑
γ=1

Kγ∑
i=1

∂

∂Zγi
(Fγ(Zγi ) pt((Z

α
i )i,α)) (57)

−
P∑
γ=1

Kγ∑
i=1

∂

∂Zγi

( P∑
α=1

1

Kα

Kα∑
j=1

M γα(Zγi , Z
α
j ) pt((Z

α
i )i,α)

)
+

1

2

P∑
γ=1

Kγ∑
i=1

(βγV )2 ∂2

∂(V γi )2
pt((Z

α
i )i,α)

We now adopt the Klimontovich approach [13] which has been successfully developed for the kinetic theory of
gases and plasmas. The method is here adapted to the derivation of a probabilistic description of the system
(17) of noisy interacting spiking neural populations with multicomponent and multicompartmental structure
(see also [6]).

One de�nes the following set variable

N µ(U) =
1

Kµ

Kµ∑
i=1

δ(Zµi − U) (58)

where δ(·) is the Dirac distribution and Zµi is the solution of (18) written for the population Pµ. Z
µ
i and U

are in Rdµ+mµ+2. The expectation value of the stochastic variables N µ(U) with respect to the probability
distribution pt is denoted by nµt (U), so that

nµt (U) = 〈N µ(U)〉pt . (59)

We call nµt (U) the neural population probability distribution (PPD) for the population Pµ. In the following,
we call Ω the integration space over all variables Zδl , l = 1, 2, . . . ,Kδ, δ = 1, 2, . . . , P . We now derive an equation
for nµt (U). The time derivative ∂

∂tn
µ
t (U) is composed of 3 terms

∂

∂t
nµt (U) = γµ1 + γµ2 + γµ3 . (60)

Let us consider each of them separately. The �rst one, γµ1 is given by

γµ1 = −
∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl

P∑
γ=1

Kγ∑
i=1

∂

∂Zγi
{Fγ(Zγi )pt((Z

α
i )i,α)} 1

Kµ

Kµ∑
j=1

δ(Zµj − U). (61)

Being a probability distribution, pt has nice vanishing properties for su�ciently large values of the variables
Zµi . Thus, a simple integration by parts on (61) enables us to deduce the following expression for γµ1

γµ1 =

∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl

P∑
γ=1

Kγ∑
i=1

{Fγ(Zγi )pt((Z
α
i )i,α)} ∂

∂Zγi

1

Kµ

Kµ∑
j=1

δ(Zµj − U). (62)

Clearly, ∂
∂Zγi

∑Kµ
j=1 δ(Z

µ
j − U) = 0 if γ 6= µ, so that

∂

∂Zµi

Kµ∑
j=1

δ(Zµj − U) =
∂

∂Zµi
δ(Zµi − U), i = 1, 2, . . . ,Kµ.

Hence (62) can be rewritten

γµ1 =
−∂
∂U


∫

Ω

P∏
δ=1

Kδ∏
l=1

dZδl

Kµ∑
i=1

{Fµ(U)pt((Z
α
i )i,α)} 1

Kµ
δ(Zµi − U)

 (63)

=
−∂
∂U

{∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl {Fµ(U)N µ(U)pt((Z
α
i )i,α)}

}
. (64)
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Finally, using (59), γµ1 is given by

γµ1 =
−∂
∂U

(Fµ(U)nµt (U)). (65)

Let us now consider the second term γµ2 in (60)

γµ2 = −
∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl

P∑
γ=1

Kγ∑
i=1

∂

∂Zγi

{
P∑
α=1

1

Kα

Kα∑
l=1

M γα(Zγi , Z
α
l )pt((Z

α
i )i,α)

}
1

Kµ

Kµ∑
j=1

δ(Zµj − U). (66)

By the same argument used for the derivation of (65), an integration by parts in (66) implies

γµ2 =

∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl

P∑
γ=1

Kγ∑
i=1

{
P∑
α=1

1

Kα

Kα∑
l=1

M γα(Zγi , Z
α
l )pt((Z

α
i )i,α)

}
∂

∂Zγi

1

Kµ

Kµ∑
j=1

δ(Zµj − U) (67)

= − ∂

∂U

P∑
α=1

∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl

Kµ∑
i=1

1

Kα

Kα∑
l=1

M µα(U,Zαl )pt((Z
α
i )i,α)

1

Kµ
δ(Zµi − U)

= − ∂

∂U

P∑
α=1

∫
Rdα+mα+4

dU ′
∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl

Kµ∑
i=1

1

Kα

1

Kµ

Kα∑
l=1

M µα(U,U ′) pt((Z
α
i )i,α)δ(Zµi − U)δ(Zαl − U ′)

= − ∂

∂U

P∑
α=1

∫
Rdα+mα+4

dU ′
∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl M
µα(U,U ′)pt((Z

α
i )i,α)N µ(U)N α(U ′)

which again leads to

γµ2 = − ∂

∂U

P∑
α=1

∫
Rdα+mα+4

dU ′M µα(U,U ′)〈N µ(U)N α(U ′)〉pt . (68)

The term γµ2 has been obtained without the use of approximations and hence is exact. However, it is not
really useful in applications. A way to go further consists in making the so called mean �eld estimate (see Ref )

〈N µ(U)N α(U ′)〉pt ≈ 〈N µ(U)〉pt〈N α(U ′)〉pt . (69)

This approximation is valid because the �uctuations of N µ(U) (resp. N α(U ′)) are small for Kµ (resp. Kα)
large and are O( 1√

Kµ
) (resp. O( 1√

Kα
)).

Accordingly, the coupling term γµ2 takes the form :

γµ2 = − ∂

∂U

P∑
α=1

∫
Rdα+mα+4

dU ′M µα(U,U ′)nµt (U)nαt (U ′). (70)

The last di�usive term γµ3 can be derived in a similar fashion. It is given by

γµ3 =
1

2

∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl

P∑
γ=1

Kγ∑
i=1

(βγV )2 ∂2

∂(V γi )2
pt((Z

α
i )i,α)

1

Kµ

Kµ∑
j=1

δ(Zµj − U). (71)

Integration by parts gives

γµ3 =
1

2

∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl

P∑
γ=1

Kγ∑
i=1

(βγV )2pt((Z
α
i )i,α)

1

Kµ

∂2

∂(V γi )2

Kµ∑
j=1

δ(Zµj − U). (72)

Here also, one has

∂2

∂(V γi )2

Kµ∑
j=1

δ(Zµj − U) = 0 if γ 6= µ (73)

while

∂2

∂(V µi )2

Kµ∑
j=1

δ(Zµj − U) =
∂2

∂(V µi )2
δ(Zµi − U). (74)
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Thus

γµ3 =
1

2

∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl pt((Z
α
i )i,α)

1

Kµ

Kµ∑
i=1

(βµV )2 ∂2

∂(V µi )2
δ(Zµi − U). (75)

So

γµ3 =
(βµV )2

2

∂2

∂v2

∫
Ω

P∏
δ=1

Kδ∏
l=1

dZδl pt((Z
α
i )i,α)

1

Kµ

Kµ∑
i=1

δ(Zµi − U) (76)

and hence

γµ3 =
(βµV )2

2

∂2

∂v2
nµt (U). (77)

6 Conclusion

...
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