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Magnetic Surface Breaking by Islands

D. GANDOLFO *)-*) R HOEGH-KROHN *): **) | R RODRIGUEZ *) ***)

Abstract. Analytical M.H.D toroidal equilibria with flow may be obtained Magnetic configurations
corresponding to small pertubstions of these equilibria are numerically studiedA model for
transport is proposed.

Introduction. It is well known thet the bresking of magnetic surfaces in a toroidal plassma by
resonant magnetic perturbstions are related to the growth of megnetic islands. Thus the rather
chaotic behaviour of field lines can affect considerably the radial particle transport. We have
considered the influence of plasma rotation on the behaviour of excited modes by given small force
free megnetic field, analytic solutions of equilibrium with flow being given along lines analogous to
(1) (2). The stochasticity threshold, as determined numerically, can also be estimated using
resulls from renormalization techniques in hamiltonian formalism recently developed in (7) (8).
Finally, in a rether phenomenological mode! for stochastic dynamics of particles in such magnetic
configurations, we obtain radial diffusion rate with 1/B magnetic field behaviour.

). Small magnetic perturbations of a torgidal plasma equilibrium with flow.

In a recent paper (1) (seealso(2)), it has been constructed exact solutions of the stationary MHD
equstions for a roteting exisymmetric plesma. Here, in & first step, we give others analytic
solutions in the case of a purely toroidal flow.

We consider the Shafranov type equation (2) g o

Lip) + Jp)Ig) + (14 L% "t 614 o
where, in cylindrical coordinstes (v, ¥, 5) of, =t rr (__ 3;) )0 is the poloidal
magnetic flux, §s 5/3 . G-(H is a functional which ténds to F (y«) , the derivative of the
pressure functional, as L tends to zero. Here, Jf2. mesasures the flow, namely
v /f“(Ye s __\f) _r)_/r , € being the internal energy and I @ scale length
parameter J(f)gwes the toroidal component of the magnetic field B :(_T{\f)e +€ AV\’/
(this equation has been derived when the entropy is chosenasa \ functional).
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We have done the following cholce:: (3) &(y)= ;—, and 3’7+), - e X (v- vf;‘)
P .Y and )l«o being soma constants. The solution is ( see alsa ( 4) for /2. 20)

¥ops g wa(E)er(fT(%) « f M(5)) +2PL an(2)

m3o0

2m

T and N, being Bessel functions of 15 and 2" kind. All constmtsdependm.ll.thea:: being
decreasing coefficients. Y' has to verify the following conditions : f has a maximum for }:o,
r= vy (which will define the magnetic exis) ; it verifies ’J"r/;,.‘-g ftb‘fa/a}" /3:0, r=r,
All coefficients are in terms of 9, v % f ond J2 . In this way, we heve unicity of the
magnetic axis within tr}zvar!able plasma boundary. The pressure being given here by

P lh" S 3
P=';1.('+ -%.;:‘) (¢-%) + p=0 on the boundary (chossn inside the ragion
limited by the separatrix) so ¥ -\‘b(r‘b, 3.) - 4, may be related to the torcidal component
of the current density on the axis by Jo = fre R, do /(;2“) ; J, isknown interms of the
toroidal component of the magnetic field &, . Finally, one hes for the field Bﬁ{g‘r‘_; Y h

- 0

BP = -'; ‘Z; A 3\{ . The breaking of these magnetic surfaces by perturbations which don't
preserve the toroidal () invariance is well known from a theoretical point of view (5) (6) (7)
(see also (8)). Here, we have considered the simplest case of perturbing field of the form
- . . -, =P .

’5=5i("l’" (;I,?)Xer-.f )+¢.¢ and we have chosen B, and go Insuchaway that

this psrturbation is resonant for 1: 12 whera ? is the safety factor.

Numerical integration of field line equations is performed with a Merson routine, on a IBM 3081
Computer ; Acezle for the required relative sccuracy. Results are shown on fig 3, 4 for
B =T and 3 1.o¥swherethe m= | mode hes been excited;for 2220, the threshold is
E= 5107 T . The snalogous cese ' Bo=tT and 9,=.55 Wb ,wherethe =2 mode
is present, is considered in fig. 5, 6. The hemiltonien formalism cen be used to give an onalytical
estimate of the threshold. As is well known, (7), the magnetic 1ine squations may be viewed s the
hamilton equations for  H (p,3,y)= ‘f«(r, 3)  whers ¢ s "time” and the canonical
coordinate associated to 3 is b(3,¢)= L'a? dr . In the non perturbedcase, H, is o P
independant one degree of freedom hamiltonian and is thus integrable. So, if (I‘-, 0) orethe
action-angle veriables where I -;‘-wfz p d} » the integral being taken on agiven W (r3)= o~
curve, onehas Ho = Ho(x) , and o/, = 1/1 (x) where q s the safety factor. Inour case,

=% (5:‘7,"4. 315' (1- 1’_)) near the magnetic axs.

9o v %o

It can be shown that the perturbed potential may be well approximated, in a Fourier expansion with
respect to these variables, by only two terms. In such a way, after canonical transformations, the
hamiltonion H tokestheform M (v, )= T2t taw -8 an(2usy ) whers
a2 b€ | HI@ V[, pobe IMJ()Ve | ad V,,V, ore Fourler coefficients
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evelustedfor T= I, (X, toroids] flux eccrossthe g =1 surface). It hes been considered In
(7) (8) the growing of the stochastic layer which appesrs around the separatrix corresponding to
the hamiltonian with B=c .Theobtained threshold is g = °i7/[4',ql which for S2z0 , mel
gives é'z:. 127. :

11. A model for stochastic dynamics.
The dynamics of the particles in magnetic structure consisting of numerous small islands (many
excited m and . modes) may be viewed, in the collisional case, 83 the dynamics of slochastic, non
isotropic diffusion processes, namely verifying some stochastic differential equation of the type
dX, « P(&,t) dt + Drdw,

We is the standerd Brownian motion, D': ET® | 4 istheclectron mass, T isa
charecteristic time of the diffusion inversely proportional o the viscosity. In the sleb geometry we
consider here, with the magnetic field essentially over the 3 axis, @~ is a symmetric consiant

A
&g 9

metrix £,|o* 05 ol B is 8 drift term which has to be determined by some stochastic
°© o9

dynamical assumption (9) (10) (11) (12). One defines the derivative of functional of the process
s RF(xt)= IQT_*-;(%H.IE(F(XL?A& 1 AE)-F(x, 4 [Xesx)

tus DyF. ) F 4 g OF & %"gig %, F where gz 09, Aeg,
and P_‘= /5"’._ p3ag% > lo [ . Here £ is the distribution probability of the process.
Onehes D, X (x)=f (8 s0: B, end B_ (ingeneral different), have the meening of
mean velocities. It can be shown that V= L (B++-) verifies the equation of

continuity 9, + Q. (gv)=owhile u= 2 (B,-p.) isoivenby u‘:-{zg'-’%-lojf-

Now , the stochestic dynamical assumption (9) may be given by ( for magnetic forces) :
Q.= L (p Ig + D/g )= € ~raB8 . This leads to non linear partial differentiel equations for «
= t(BA AR,
end v , whichmay be relfted to simpler one of the type & J, K(x,y)= & K(x,y) where
D ,;.('D RIYYY. GQN(D‘_ _i€A,.) where A is the vector potentisland G isthe (x,3)
A

part of 3= oo . The knowledge of X gives g end v, which in turn gives 8 . In the most
simple case (stationary process) one is led to en Ornstein Uhlenbeck pracess of the type

(dz‘)-A(xéM*»s o
dy /=y 4\«4‘)

N =L Ao
where A . !ﬂ?_o[ x ] od B.D ]

¢ (/% . Ay
A, end /\,_ being eigenvalues of 3 . Finally, one has

e = FALA) L +°('/c)
el B
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This behaviour corresponds to the simplest solution of the X equation leading to linear stochastic
differential equation wich can be intsgrated. For others solutions of the X equation, which can be
given, the situation s much more complex, leading in general, to non linear stochastic equations.
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EIGURE CAPTIONS

Fig 1  Cross section of magnetic surfaces ( £z0) ford‘éozo (full lines) and Vgo- 1 (dotted lines)

( L s related to the Mach number 6, for rav, by A= zJé:/(b-":—l.-Jé,"))
FIQ2  Cross section of pressurs surfecss( € =) for /G, o (full lines) and g = | (otted lnes)
Fig 3 Cross seotion of perturbed field lines (6,20, B,=1T, 9, = Lo¥ whb)

at Eale™r b Ez2007F c: £ b0
Eig4  Mainisiands (w1, £ats) for ol s )ond i ae)
Fig.§  Cross section of perturbed field lines (/6 =0 , & a1T, o=-55wh)

a: €= oy biéslodr C:Ea2lor
Fig6 Mainislonds (w2, £ 10%) forvbzo (o )ond G oi(ae)
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