Chap H : Introduction a la programmation de Genesis

Plan

I. Initialisation

II. Les éléments et objets de Genesis
ITI. Créer et détruire des éléments

IV. Examiner et modifier des éléments
V. Exécuter une simulation Genesis

VI. Introduire des prahiques

VII. Envoyer des messages

VIII. Ajouter des boutons & une xform
IX. Mode de fonctionnement de Genesis
X. Insérer des commentaires dans un script
XI. Définir des fonctions

XII. Ajouter des canaux ioniques potentiels dépendants

I. Initialisation

Aprés avoir lancé Genesis, on a accés aux commandes du SLI (Script Language

Interpreter). Dans Uinterpréteur, il est possible d’effectuer des commandes Linux
(compatibles UNIX) et des commandes Genesis.

le

genesis #2 > Is
AUTHORS Hyperdoc README Usermake convert lib rallpack startup
Doc Libmake Scripts VERSION 2.1 include man src
Is permet d’afficher la liste des fichiers présents dans le répertoire courant.
genesis #3 > Is -a
nxsimre AUTHORS Libmake Usermake include rallpack
simrc Doc README VERSION 2.1 lib src
.minsimrc .simrc” Hyperdoc Scripts convert man startup
Is -all permet d’afficher tous les fichiers dans le répertoire courant.

genesis #5 > cd ..

cd .. permet de remonter d’un cran dans I’arborescence des fichiers présents sur
disque.

genesis #1 > pwd
/home/rodrig/genesis

pwd permet de connaitre le chemin d’accés au répertoire courant.
genesis #9 > listcommands

Available commands :

abort abs acos addaction
addalias addclass addescape addfield
addforwmsg addjob addmsg addmsgdef
addobject addtask affdelay affweight

arge arglist argv asciidata

asin atan balanceEm calcCm

calcRm call callfunc cd
ce cellsheet check chr
clearbuffer clearerrors closefile connect

listcommands est un ordre genesis produisant une liste de toutes les commandes
possibles en utilisant le langage SLI.

Il est possible d’utiliser des commandes Linuz combinées avec des commandes
genesis.

genesis #17 > listcommands | more

Available commands :

abort abs acos addaction
addalias addclass addescape addfield
addforwmsg addjob addmsg addmsgdef
addobject addtask affdelay affweight
arge arglist argv asciidata
—Encore—

listcommands | more permet d’afficher la liste des commandes de genesis avec
la possibilité de controler le défilement par ’ordre more. Pour poursuivre le défi-
lement, taper Return.

genesis #5 > listcommands > Iscomm.txt

listcommands > monfichier.tzt envoie le texte produit par listcommands dans
un fichier intitulé monfichier.txt

II. Les éléments et objets de Genesis

Les composants de base utiles pour construire des simulations sont appelés
éléments. Ces derniers sont créés a partir de structures appelées objets ou bien
types €lémentaires. La liste des objets disponibles peut étre visualisée par 'ordre
listobjects

.genesis #6 > listobjects

AVAILABLE OBJECTS :

Ca_ concen Kpores Mg block Napores

PID RC asc_ file axon

axonlink channelA channel B channelC
channelC2 channelC3 compartment concchan
concpool ddsyn defsynapse dif2buffer
difbuffer diffamp difshell disk in

disk out diskio efield enz

expthresh fixbuffer freqmonitor funcgen

fura2 ghk graded hebbsynchan

hh channel hsolve interspike leakage ...

Pour avoir une information plus détaillée sur un objet , taper showobject <no-
mobjet>

genesis #11 > showobject compartment

object = compartment
datatype — compartment type
function = Compartment().....
x0 0
y0 0
z0 0
activation 0
Vm 0 compartment potential
previous_state 0
Im 0

Em 0 resting potential

Rm 1 membrane resistance
Cm 1 membrane capacitance
Ra 0 axial resistance

inject 0 injected current

dia 0 compartment diameter
len 0

initVm 0 initial Vm value at reset

L’objet compartment (compartiment) est trés utilisé dans les simulations de Ge-
nesis pour construire des modéles de neurones. Les valeurs de Ra, Rm, C'm,inject, Vm
caractérisant cet objet sont relatives au modéle de circuit élémentaire tel que celui
qui est représenté ci dessous.

figure 1

Pour avoir une information plus détaillée sur un objet, taper help nomobjet |
more

genesis #2 > help compartment | more
Object Type : compartment
Description : Axially asymmetric compartment. Ra is located on

one side of the compartment. This is slightly more
computationally efficient than the symmetric counterpart.

Fields : Rm total membrane resistance

Cm total membrane capacitance

Em membrane resting potential

Ra axial resistance

inject injected current in membrane

dia compartment diameter

len compartment length

Vm voltage across the membrane
previous_state Vm at previous time step

Im total membrane current

initVm initial value to set Vm on reset ...

ITI. Créer et détruire des éléments

Pour créer un élément d’un type donné (c’est a dire correspondant a un objet
de base), on utilise I'ordre create. Une aide en ligne permet de préciser 1'usage de
cet ordre. Pour cela, il siffit de taper create sans arguments.

genesis #7 > create
create : too few command arguments
usage : create object name -autoindex [object-specific-options|

On va créer un compartiment appelé soma

genesis #9 > create compartment /soma

OK

Les éléments sont maintenus dans une hiérarchie, comme cela est le cas dans
'organisation des fichiers et répertoires du systéme Linuz (UNIX).

Ici, /soma avec / indique que le soma est placé a la “racine “ (en haut) de la
hiérachie. On pourra construire des (modéles de) neurones appelés par exemple
JcelluleL11 composés d’un soma somaL11 (par exemple), de dendrites dendsL11
pourvues de canaux Fx_canauzr et d’'un axone azoneL11. Il suffira de créer des

compartiments dans une hiérarchie de la forme /celluleL11/somal11, /cellu-
leL11/azxoneL11, /celluleL11/dendsL11, /celluleL11/dendsL11/Ex_ canaux

Pour cela, il sera nécessaire de créer I’élément /celluleL11 d’un type approprié.
Genesis procure un objet a cet effet dénommé neutral. Un élément de ce type
est un élément vide, qui n’effectue aucune action et qui sert généralement d’élé-
ment parent auquel vont se greffer de nombreux autres objets. Un exemple de
construction pourrait étre :

genesis #0 > create neutral /cellulel.11
OK
genesis #1 > create compartment /celluleL11/somal.11

OK
On peut également éliminer un élément par ’ordre delete

genesis #2 > delete /celluleL11/somall1
OK

IV. Examiner et modifier des éléments

Les commandes permettant de se déplacer dans la hiérarchie des éléments créés
par Genesis sont analogues a celles existant dans le systéme Linuz. Par exemple,
la commande permettant de faire une liste des éléments créés au niveau courant
de la hiérarchie est le (list elements)

genesis #3 > le

*proto output
celluleL11

Chaque élément contient des champs (fields) qui contiennent les valeurs des
parameétres et des variables d’état utilisés par I’élément. Pour connaitre le contenu
de ces champs, on utilise la commande showfield nomélément suivi de -all (en
abrégé -a) si 'on désire connaitre les valeurs numériques de tous les champs.
Sinon, il suffit de lancer la commande showfield nomélément nomduchamp

genesis #10 > create compartment /cellulel.11/dends
OK
genesis #11 > showfield /celluleL11/dends -all

| /celluleLi11/dends |

x0y0z0 = (0.000000e+-00 , 0.000000e+00 , 0.000000e+00)
XyZ = (1 0.000000e+00 , 0.000000e+00 , 0.000000e+00)
flags =0

FUNCTIONAL

Clock | 0 | = 1.000000e+00
0 incoming messages
0 outgoing messages

activation =0
Vm =0
previous_state =0
Im =0
Em =0
Rm —
Cm =
Ra =0
inject =
dia —
len =0
initVm =0

Les champs (fields) sont ici Vm, Rm, Cm, Ra, len, initVm,....
Pour connaitre la valeur de Rm :

genesis #12 > showfield /celluleL11/dends Rm

| /celluleL.11/dends |
Rm =1

Quand on éxécute une simulation dans Genesis, on se trouve localisé a un
certain niveau de la hiérarchie qui est dénommé 1’élément de travail : working
element. Certaines commandes nécessitent de conaitre la localisation de ce niveau.
Par exemple, la commande le doit, en principe étre suivi du chemin d’acceés a
I’élément dont on désire faire la liste des objets affiliés.

genesis #14 > le /celluleL11
dends

Quand le chemin est omis, le working element est utilisé comme chemin, et le
établit une liste de tous les éléments qui sont localisés sous ce working element.

genesis #15 > le
dends

Pour se déplacer dans la hiérarchie, on utilise I'ordre ce (change element). Par
exemple, pour changer le working element (élément de travail) /celluleL11 en /cel-
luleL11/soma que 'on vient de (re)créer, taper

genesis #19 > create compartment /cellulel.11/somal.11
OK
genesis #25 > ce somal.l1l

Si I’on connait la nature de I’élément de travail, il suffira de taper showfield -all
sans arguments pour avoir accés a toutes les valeurs des paramétres et variables
d’état disponibles dans cet élément.

genesis #27 > showfield -all

| /cellulel.11/somal.11 |

x0y0z0 = (0.000000e+00 , 0.000000e+00 , 0.000000e+00)
XyZ = (. 0.000000e+00 , 0.000000e+00 , 0.000000e+00)
flags =0 .

On peut connaitre le working element courant en tapant pwe (print working
element). C’est I’équivalent genesis de pwd de UNIX.

genesis #28 > pwe
/celluleL11/somaL11

Par analogie avec UNIX, Genesis utilise le point “.” pour signifier le working
element et le double point “..” pour désigner I’élément situé un cran au dessus du

working element dans la hiérarchie.

genesis #32 > ce .
genesis #33 > pwe
/celluleL11/somaL11
genesis #34 > ce ..
genesis #35 > pwe
/celluleL11

Il existe des commandes analogues a pushd et popd de UNIX qui sont pushe
et pope. Ceci procure un moyen commode de changer de localisation, dans la
hiérarchie, vers un nouveau working element par pushe et ensuite de retourner
vers le working element précédent.

genesis #35 > pwe

/celluleLL11

genesis #36 > pushe /celluleL11/somal11
/celluleL.11 /somaL11

genesis #37 > pwe

/celluleL11/somal11

genesis #38 > pope

/celluleL11

genesis #39 > pwe

/celluleL.11

On peut changer le contenu des champs (fields) par la commande setfield. Par
exemple, pour changer la valeur de Rm de /celluleL.11/somal.11 :

genesis #39 > pwe

/cellulelL11

genesis #40 > setfield /celluleL.11/somal.11 Rm 10
OK

Plusieurs valeurs peuvent étre modifiées en méme temps

genesis #41 > setfield /cellulel.11/somal.11 Rm 20 inject 10
OK
genesis #42 > showfield /celluleL.11/somal.11 -all

10

Im =0

Em =0
Rm = 20
Cm =
Ra =0
inject =10

V. Exécuter une simulation Genesis

La commande check permet d’effectuer un test sur la cohérence du texte enre-

gistré pour le programme. Ensuite, avant de débuter la simulation, les éléments
doivent étre placés dans un état initial connu. Ceci est fait & ’aide de 'ordre reset.
L’éxécution de la simulation fait appel a ’ordre step suivi d’un nombre indiquant
le nombre de pas a effectuer

genesis #43 > check

genesis #44 > reset

time = 0.000000 ; step = 0

genesis #45 > step 10

time = 10.000000 ; step = 10

completed 10 steps in 0.000000 cpu seconds

genesis #46 > showfield /celluleL.11/somal.11 -all

| /celluleL11/somal.11 |
Vm = 78.69386806
previous _state = 72.47436968

L’affichage de ces valeurs indique que le potentiel de /celluleL11/somalL11, qui

est décrit par un circuit électrique représenté dans la figure 1, est passé de la
valeur initVm = 0 & la valeur Vm = 78.69386806 (mV). La variable Vm qui a
des valeurs se modifiant au cours de la simulation est appelée variable d’état. Ces
variables ne peuvent étre modifiées par setfield.

11

VI. Introduire des prahiques

Genesis permet d’envoyer les résultats d’une simulation dans des fichiers pour
leur exploitation. Il existe également une possibilité de visualiser le déroulement
d’une simulation au cours de son éxécution.

A titre d’exemple, considérons le cas ot on désire visualiser les variations de
potentiel de /celluleL11/somaL11 qui a été créé plus haut. La mise en place de
graphiques se fait en utilisant des objets graphiques appartenant & XODUS, la
bibliotheque des objets graphiques de Genesis.

L’objet de base est la xzform, sur laquelle vont se greffer d’autres objets. Ce
sont les “fenétres” (“windows”). Pour créer une zform, on utilise 'ordre create. Un
nom est donné a la fenétre (xform), par exemple donnees (s’abstenir de mettre
des accents!)

genesis #47 > create xform /donnees

OK

La fenétre n’apparait pas a ’écran. Pour la visualiser, taper zshow /donnees.
Une fenétre vide va apparaitre

:.'II: Fimlime L) L TN TR .l'\.:.de
— - |donnees - O X p—
RCIE
oS
LT — LU

cenesizs #d49 > wshow Sdonnees
seresis #50 > ||

figure 2

12

Pour créer le graphe du potentiel de /celluleL11/somaL11 dans cette fenétre,
avec le nom potentiel, on utilise la commande create zgraph . Ce graphe sera affilié
a la fenétre précédemment créée. La syntaxe est alors :

genesis #50 > create xgraph /donnees/potentiel
OK

— -l |donnees - 0O X

potentiel
100

80+
60
dﬂi
ED;

0% 20 40 60 80 100

figure 3
On peut détruire la zform créée et son contenu par zhide /donnees.

VII. Envoyer des messages

A présent, disposant d’un soma et d’un graphe, on va faire passer des informa-
tions de I'un vers 'autre. Les communications inter-éléments dans Genesis sont
réalisés a 1’aide d’un systéme de liens appelés messages. La messagerie permet &
un élément d’avoir acceés aux champs (fields) d’un autre élément.

Par exemple, si on désire représenter les variations de potentiel du soma consi-
déré ci dessus, on fait passer un message du soma au graphe en indiquant que le
champ devant étre représenté est Vm

13

.genesis #11 > addmsg /celluleL11/somal11l /donnees/potentiel PLOT Vm
*volts *green

OK

genesis #12 > reset,

time = 0.000000 ; step = 0

genesis #13 > step 100

time = 100.000000 ; step = 100

completed 100 steps in 0.000000 cpu seconds

— -l |donnees - 0O X
potentiel
1507
100
R
ﬂ-l LA I B S T ™ T 7T
0 20 40 G0 80 100

figure 4
Les 2 premiers arguments précisent la source et la destination du message. Le
troisiéme argument indique quel type de message I’on est en train d’envoyer. Ici,
il s’agit de dessiner (PLOT) le contenu du 4éme argument Vm. Les 2 derniers
arguments sont un intitulé du dessin et sa couleur d’affichage.
Il est possible de représenter sur la méme fenétre les variations d’une autre
variable, par exemple le courant injecté inject;

.genesis #11>addmsg /celluleL.11/somal.11 /donnees/potentiel PLOT inject

*courant *red

OK

14

De la méme facon que la commande showfield permet d’examiner le contenu
des diverses variables, la commande showmsg permet de déterminer quels ont été
les messages envoyés entre les éléments. Ceci est utile dans les mises au point des
programines.

genesis #3 > showmsg /donnees/potentiel

INCOMING MESSAGES

MSG 0 from ’/celluleL11/somal.11’ type [0] 'PLOT” < data = 199.991 > <
name = volts > < color = green >

MSG 1 from ’/celluleL11/somal.11’ type [0] 'PLOT’ < data = 20 > < name
— courant > < color = red >

OUTGOING MESSAGES

Les messages “entrants” (incoming messages) 0 et 1 correspondent aux 2 mes-
sages qui ont été envoyés pour effectuer le graphe, avec la valeur de la variable
affichée, a l'issue des 100 pas. Il n’y a pas de message “sortants” (outgoing mes-
sages) du graphe .

On peut détruire des messages avec la commande deletemsg

genesis #4 > deletemsg /donnees/potentiel 1 -incoming
OK

L’affichage du courant est annulé (dés I’enregistrement de la commande).

genesis #5 > reset
time = 0.000000 ; step = 0

L’affichage du courant ne se fait plus.

On peut également controler la nature des messages qui partent et arrivent au
soma.

genesis #8 > showmsg /celluleL11/somal11

15

INCOMING MESSAGES

OUTGOING MESSAGES
MSG 0 to ’/donnees/potentiel’ type [0] 'PLOT’ < data = 199.991 > < name
= volts > < color = green >

VIII. Ajouter des boutons & une xform

L’élément graphique zbutton est souvent utilisé pour activer une fonction quand
un “click” est effectué sur la “souris”

genesis #9 > create xbutton /donnees/INITIAL -script reset
OK

Un bouton avec l'intitulé INITIAL est instantanément créé dans la fenétre
/donnees (xform). Quand un click est effectué sur ce bouton, le graphe qui s’y
trouvait éventuellement disparait et l'initialisation est faite.

L’ajout d’un autre bouton se fait suivant les mémes principes

genesis #10 > create xbutton /donnees/EXECUTION -script "step 100"
OK

Un nouveau bouton intitulé EXECUTION (ou RUN) apparait dans la zfom
instantanément. Ici, la fonction qui est appelée dans le “script” nécessite 1'utilisa-
tion d’un paramétre (le nombre de pas a effectuer). Pour cela, il est nécessaire de
disposer de guillemets.

Toutes les commandes qui ont été éxécutées dans l'interpréteur SLI peuvent
étre rassemblées dans un fichier qui portera un nom ayant l’extension .g, par
exemple chapH.g. 1l est habituel de mettre en téte du programme le commentaire
(précédé de //) //genesis. Dans la version finale ci dessous, un bouton QUITTER
a été ajouté, permettant de quitter la simulation en cours sans quitter genesis.
Pour cela, il a fallu utiliser une commande intitulée hidegraphics qui se trouve
dans une “bibliothéque” intitulée “bib1.g” qui est une collection de fonctions utiles
que 'on s’attache par la commande include bib1.g.

/ /genesis

16

include bibl.g

create neutral /celluleL.11

create compartment /cellulel.11/somal.11
create xform /donnees

create xgraph /donnees/potentiel

xshow /donnees

setfield /cellulel.11/somal.11 Rm 10 inject 20

create xbutton /donnees/INITIAL -script reset
create xbutton /donnees/EXECUTION -script "step 100"
create xbutton /donnees/QUITTER -script "hidegraphics /"

addmsg /celluleL11/somal.11 /donnees/potentiel PLOT Vm *volts *green
addmsg /celluleL11/somal.11 /donnees/potentiel PLOT inject *courant *red

check
reset,
step 100

IX. Mode de fonctionnement de Genesis

Comment Genesis effectue les diverses opérations au cours d’une simulation ?
Pour répondre & cette question, on notera tout d’abord que, contrairement aux
divers programmes écrits en C, Pascal ou Fortran, il n’y a pas de boucle explicite
en temps. Bien qu’il existe un terme for comparable & celui qui existe en C, celui
ci n’est pas utilisé pour effectuer des itérations dans le temps.

Quand un script est lancé (par exemple chapH.g) ou bien quand des com-
mandes sont entrées interactivement au clavier, le langage SLI éxécute la simu-
lation en traitant 1'une apreés 'autre les commandes présentes dans le script :
création d’éléments, affectation de valeurs par setfield, établissement de messages
entre éléments, etc ...

L’itération dans le temps est implicitement réalisée quand la commande step est
appelée. La plupart des objets peuvent effectuer des actions , quand la commande

17

step est réalisée. Parmi ces actions, 'une dénommée PROCESS est éxécutée 100
fois, si la commande est step 100. Pour connaitre toutes les actions pouvant étre
effectuées par un objet donné, il suffit de taper showobject nomobjet.

genesis #20 > showobject compartment

object = compartment

VALID ACTIONS
RESTORE2 SAVE2 SET CHECK RESET PROCESS INIT

On dit que le langage est orienté-objet. Chaque élément peut éxécuter ses
propres actions et affecte les autres éléments seulement par 1’échange de mes-
sages.

X. Insérer des commentaires dans un script
Il est recommandé, pour faciliter la lecture et la mise au point des programmes,

d’y insérer des commentaires. Ceci se fait par 'introduction du signe // au début
de chaque ligne devant servir de commentaire.

/ /genesis

// chargement d’une bibliothéque
include bibl.g

/ /création d’un élément parent,

create neutral /cellulel.11

//création d’un objet compartiment

create compartment /celluleL.11/somal.11

/ /affectation de valeurs a des champs internes

setfield /celluleL.11/somal.1l Rm 10 inject 20

18

//création et affichage d’une fenétre pour
// visualiser un graphe

create xform /donnees

create xgraph /donnees/potentiel

xshow /donnees

/ /création de boutons pour éxécuter les commandes

create xbutton /donnees/INITIAL -script reset

create xbutton /donnees/ EXECUTION -script "step 100"
create xbutton /donnees/QUITTER, -script "hidegraphics /"

//envoi de messages du soma vers les graphes

addmsg /celluleL11/somal.11 /donnees/potentiel PLOT Vm *volts *green
addmsg /celluleL11/somal.11 /donnees/potentiel PLOT inject *courant *red

check // test de consistance pour chaque élément,

reset // initialisation

Plusieurs lignes de commentaires peuvent étre insérées entre les symboles /* et
/* Un script Genesis pour simuler

un simple compartiment

avec injection de courant */

XI. Définir des fonctions

Le langage de Genesis permet de définir des fonctions, rendant le programme

modulable et plus facilement modifiable. Ces fonctions doivent étre groupées au
début du script, précédant tout ordre les utilisant.

La structure générale d’une fonction est
function <nomdelefonction>(argumentl,argument?,..)

typel argumentl
type2 argument?

19

typeN wvariablelocalel

<commandel >
<commande2 >

end

Par exemple, le calcul et Paffichage de la surface (d’'un modele cylindrique)
d’un soma donne lieu & la fonction calculsurface

/ /genesis
function calculsurface(longueur, diametre)

float longueur, diametre
float surface
float P1=3.14159
surface=PI*diametre*longueur
// affichage
echo La surface est {surface}
end

Si on appelle fonc.g le script ci dessus (ne pas omettre / /genesis!), 'éxécution
de la fonction peut se faire en 2 étapes

genesis #1 > fonc.g
genesis #2 > calculsurface 3 3
La surface est 28.27431

Les paramétres longueur et diametre ne sont pas placés entre parenthéses dans
I’appel. La fonction prédéfinie echo permet 'affichage de ses arguments & ’écran.
Le programme précédent construisant un soma passif est réécrit ci dessous a I’aide
de fonctions.

/ /genesis
/* Un script Genesis pour simuler

un simple compartiment
avec injection de courant */

20

// A Taide de fonctions

// chargement d’une bibliothéque
include bibl.g

function creercompartiment(chemin) //chemin=/celluleL.11
str chemin

/ /création d’un élément parent,

create neutral {chemin}

//création d’un objet compartiment,

create compartment {chemin}/soma

/ /affectation de valeurs a des champs internes

setfield {chemin}/soma Rm 10 inject 20

end

function affichage (chemin)

str chemin

/ /création et affichage d’une fenétre pour

// visualiser un graphe

create xform /donnees

create xgraph /donnees/potentiel

xshow /donnees

//création de boutons pour éxécuter les commandes
create xbutton /donnees/INITIAL -script reset

create xbutton /donnees/EXECUTION -script "step 100"
create xbutton /donnees/QUITTER, -script "hidegraphics /"

//envoi de messages du soma vers les graphes

addmsg {chemin}/soma /donnees/potentiel PLOT Vm *volts *green
addmsg {chemin}/soma /donnees/potentiel PLOT inject *courant *red
end

creercompartiment /celluleL.11

21

affichage /celluleL11
check // test de consistance pour chaque élément
reset // initialisation

XII. Ajouter des canaux ioniques potentiels dépendants

On va construire un modéle de neurone a spikes a I'aide des méthodes décrites
ci dessus basées sur 1'utilisation de fonctions qui seront relatives & :

- la confection d’un compartiment soma & 1’aide d’une fonction makecompart-
ment

- le montage de canaux Sodium et Potassium avec make_ hhiNa et make_hhK

- laffichage des résultats dans une fenétre avec la fonction affichage

Ces fonctions ont été définies dans une bibliothéque appelée bib1.g . Le pro-
gramme est le suivant :

/ /genesis
/* Un script Genesis pour simuler

un compartiment soma avec canaux ioniques
de type Hodgkin Huxley
avec injection de courant */

// A Taide de fonctions definies dans bibl.g
// chargement de la bibliotheque
include bibl.g

// On utilise les unites "physiologiques"

// SI Physiologiques

// resistance ohm kilohm

/ /capacitance farad microfarad

/ /potentiel volt millivolt
//courant ampere microampere
/ /temps seconde milliseconde
/ /conductance siemen millisiemen
//longueur metre centimetre

// compartment dimensions (cm.)

22

// soma_1= 30e-4 // dans bibl.g

// soma_d = 30e-4 // dans bibl.g

// Eleak (potentiel déquilibre dans bibl.g)
// ENa, EREST ACT dans bibl.g

float active area — soma_ 1*PI*soma_d*1.0
create neutral /R15

makecompartment /R15/soma {soma_1} {soma_d} {Eleak}
make hhNa /R15/soma Ex channel {active area} {ENa} {EREST ACT}
make hhK /R15/soma Inh _channel {active area} {EK} {EREST ACT}

setfield /R15/soma inject 0.0003 //unites physio =>0.0003microA
affichage /R15/soma / fonction affichage dans bibl.g

check // test de consistance pour chaque élément

reset // initialisation

Lors de I’éxécution, ce soma a l'intérieur duquel une injection de courant de

0.3nA a été opérée, donne lieu a la génération d’un train de potentiels d’action
comme cela est indiqué sur la figure cidessous :

23

24

