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I. Introduction

Dans le chapitre C, on a décrit les mécanismes d’activation des canaux ioniques
potentiel dépendants responsables de la génération des potentiels d’action. Cette
présentation a été faite en considérant un modeéle & un seul compartiment ou le
potentiel pouvait étre considéré comme uniformément réparti.

A présent, on va s’intéresser aux questions liées & la localisation des diverses entrées
s’effectuant sur une membrane neuronale et & la réponse électrique correspondante.
I1 va s’agir de modéliser la répartition de cette réponse, qui pourra prendre la forme
de potentiels dits postsynaptiques (PSP), sur les arborescences dendritiques. Ceci
sera fait pour des dendrites de structure simple et des indications sur la méthode
d’approche de structures plus complexes seront également données.

Les dendrites représentent la partie la plus importante, en surface et volume, du
cerveau. Suivant leurs propriétés morphologiques, on peut répartir les neurones en
classes : pyramidale , Purkinje , amacrine, stellate, etc... Une représentation en est
donnée dans la figure ci dessous




Les dendrites constituent en fait 1’élément de base du traitement de I'informa-
tion par le cerveau car la majorité des messages synaptiques transitent par elles.
Une arborescence dendritique typique recoit approximativement dix milles entrées
synaptiques distribuées sur la surface dendritique. Quand elles sont en action, cha-
cune de ces entrées produit une modification locale de conductance pour des ions
spécifiques sur la membrane postsynaptique, suivie d’un flot de I'ion correspondant
entre les deux bords de cette membrane.

Il en résulte une modification locale de potentiel membranaire qui va se propager
dans les branches dendritiques. De quelle facon ? La réponse a cette question est
fondamentale car elle permet de controler les propriétés d’entrée-sortie du neurone
et par conséquent les capacités de traitement des réseaux qui en sont constitués.

La théorie des cables a été initiée par Rall (1959) pour décrire ces réponses neu-
ronales dans des dendrites biologiquement réalistes recevant de multiples entrées
synaptiques distribuées de facon assez générale dans sa structure et dans le temps.

Cette approche, enrichie par la modélisation multicompartimentale, joue un role
important dans ’analyse des parameétres morphologiques et électriques des dendrites,
dans l'interprétation des résultats expérimentaux et dans 1’étude des dendrites au
niveau informationnel.

On va tout d’abord indiquer des ordres de grandeurs de ces paramétres, puis on
établira I’équation des cables. Puis, on indiquera comment déduire I’approximation
multicompartementale de cette équation, permettant ainsi de traiter, par des si-
mulations numeériques, des cas difficilement tractables analytiquement (ou bien non
tractables). Ceci sera réalisé a ’aide de Genesis avec le programme intitulé Cable.

II. La structure dendritique
IT1. Caractéristiques morphologiques.

On a, a I’heure actuelle, une idée assez précise de la structure dendritique grace
a la micrographie électronique et aux traitements graphiques numériques. On peut
avoir des informations sur le site et le type (excitateur ou inhibiteur) des contacts
synaptiques, sur les dimensions des dendrites avec leurs structures fines que sont les
épines dendritiques.



Les dendrites possédent de nombreux points de branchement pour élaborer des
arborescences plus ou moins complexes. Par exemple, les cellules de Purkinje (cerve-
let, figure 1 A) présentent un arbre complexe avec environ 400 branches terminales
alors que des motoneurones « de la moelle épiniére du chat (figure 1 B) possédent
une douzaine d’arbres, chacun présentant une trentaine de branches terminales.

Les dendrites sont des tubes de diamétres de I’ordre de quelques micrometres, prés
du soma. Ces dimensions peuvent étre inférieures au micromeétre dans les branches
successives. Les épines dendritiques sont de petites structures (diameétre~ 0.1 pm,
longueur ~1um). Ces épines sont des lieux privilégiés de contacts excitateurs et
semblent jouer un role important dans les mécanismes d’apprentissage impliquant
une forme de plasticité dans le systéme nerveux.

Les arborescences dendritiques peuvent étre relativement courtes (100 ~ 200um,
certaines cellules de cortex de mammiféres) ou bien assez longues (1 ~ 2mm, moto-
neurones ). La surface occupée par une dendrite est de I'ordre de 2000—750000um?,
son volume peut atteindre 30000um?.

I12. Propriétés électrophysiologiques

La partie cytoplasmique et le fluide extracellulaire aux dendrites est composé d’un
milieu ionique conducteur de courants. Les membranes elles mémes, par 'intermé-
diaire de canaux ioniques spécifiques, peut étre traversée par des courants mais la
résistance pour ce transport transverse est bien plus grande que la résistance longi-
tudinale, le long du corps de la dendrite.

Parallélement & cette résistance membranaire, la membrane dendritique posséde
des propriétés capacitives. Elle peut stocker des charges sur ses deux faces externe et
interne. Ceci procure a la membrane les caractéristiques d’un circuit R — C. L’ordre
de grandeur de la constante de temps 7, = RC est 1 — 100ms. D’autre part, la
résistivité cytoplasmique implique 'existence d’une résistance d’entrée Ry, (voir plus
loin) de 'ordre de 1M Q(sur des dendrites “épaisses”) et peut atteindre 1000M Q2(au
niveau des épines). Ces grandes valeurs de R;, impliquent que de faibles changements
de conductances synaptiques (de 'ordre de 1n.S) peuvent produire, localement, des
changements de potentiels importants (quelques dizaines de mV').

Dans la théorie des cables, I’hypotheése est faite que les propriétés électriques de la
membrane sont passives, avec des 7, véritablement constants (ne dépendant pas du



potentiel). Cependant, les dendrites peuvent présenter des propriétés actives, ce qui
entraine des complications d’analyse avec des 7, et des R;,, potentiel dépendants, de
caractére non linéaire. Ceci peut avoir des conséquences importantes sur les processus
dendritiques.

113. Les contacts synaptiques

Les synapses ne sont pas en fait distribuées de maniére aléatoire sur la surface
dendritique. On peut considérer, de maniére générale, que les synapses inhibitrices
sont plus proximales que les synapses excitatrices.

Les décours temporels des modifications de conductances peuvent couvrir une
large gamme. Les entrées excitatrices (de type AMPA et non — NM DA, voir plus
loin) et excitatrices (GABA4) s’opérent sur des intervalles de temps de l'ordre de
1ms et correspondent a des pics de conductance de l'ordre de 1nS; d’autre part,
les entrées excitatrices (NMDA) et inhibitrices (GABApR) lentes agissent sur des
intervalles de temps de 'ordre de 10 — 100m:s.

III. L’équation des cables pour des membranes dendritiques hors équi-
libre.

Dans ce qui suit, z désignera une variable (curviligne) le long du corps cyto-
plasmique d’une dendrite avec des potentiels et courants pouvant étre considérés
constants dant une section donnée (petitesse des diameétres), mais pouvant varier
avec le temps ¢, d’ol la dépendance spatiotemporelle, par exemple, du potentiel
membranaire V,,(z,t). Dans un premier temps, ’analyse est faite sur une branche
donnéé, sans ramification, qui se présente donc comme un cable.

I11.1 Caractéristique courant-tension de la membrane
A Téquilibre, c’est a dire quand la dendrite ne recoit pas d’entrées de type sy-

naptique ou externe, le courant total traversant la membrane est nul, y compris en
tenant compte des courants diis aux pompes ioniques (cours de lére année).



A présent, on considére le cas ot un courant électrique de densité j3; non nul
traverse la membrane, ceci étant d & des actions extérieures. On méne ici une étude
locale. 11 s’agit d’établir la relation, pour la ddp transmembranaire Vy; (# Viy ddp
de la membrane au repos) :

jvu = f(Vur) (D.1)

Ici, on va uitiliser une convention de signe propre aux électrophysiologistes. Jys
est compté positivement vers I'extérieur, y est une variable tranverse a la membrane,
d’épaisseur a. Ce courant est en sens contraire du sens conventionnel car le champ
électrique transmembranaire étant dirigé vers l'intérieur (au repos) par j = 0@,
7} devrait étre dirigé vers 'intérieur (voir figure ci dessous).
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Cette densité de courant est la somme des divers densités de courants d’ions &
travers la membrane. Chaque terme est de type électrodiffusif incluant les densités
de courants diis aux pompes. On a alors :

gu = = Zp 2 F (Jx + ) (D.2)

ol chaque densité de courant électrodiffusif a la forme :
Jp = _|Z_ll:| %% + Zka% (DB)
On a introduit le Faraday F' = Ne (1 Faraday=96500Cb/mole ), N : Nombre

d’Avogadro et e charge électrique. R est la constande des gaz parfaits, T est la
température (exprimée en Kelvin), Cy, est la concentration de I'espéce ionique k, de



valence z; pouvant varier entre l'intérieur et I’extérieur, ux est sa mobilité, @ est le
potentiel électrique.

La relation cherchée jpr = f(Var)est obtenue quand on connait la différence de
potentiel membranaire (ddp) Viy = ®(y = 0) — ®(y = a) = @iy — Peyy. Celle ci
peut é&tre obtenue par intégration de (3.3), en faisant I’hypothése que les courants
Ji. sont constants dans la membrane elle méme.

On obtient
a 2k Cemt
T 1§55 J2hdy = —z(ELIn(ghr) + Vi) (D.4)

On reconnait, dans le premier terme de droite, le potentiel de Nernst de I’ion &
(changé de signe) V;V. Finalement, on a

Jk Fk(VM) = —Zk(VM — VkN) (D5)

ot I'ty(Var) est le terme intégré de (D.4). I dépend en fait de Vj;. La densité de
courant €lectrique transmembranaire total est donc 73, tel que

gu = =EraF (4 Jf) = =Sk aF { I = Tk(Vi)ze(Vair — Vi) } (D-6)
qui s’écrit
g = Jar + Sk gx(Var) (Var — Vi) (D.7)

C’est la relation cherchée. Les g ont la dimension de conductances. Elles dé-
pendent, en général, non linéairement du potentiel membranaire V3,. Elles sont ap-
pelées conductances toniques.

I11. 2. Etablissement de I’équation des cables neuronaux

La relation (D.7) que 'on vient d’obtenir est valable en tout point z d’une branche
dendritique ou d’un axone, qui est vu(e) comme un cable. Le potentiel V3, qui y
apparait pourra varier en fonction de z et en fonction du temps ¢, quand la membrane
se trouvera hors équilibre, par actions extérieures (courants injectés synaptiquement



par exemple).

On établit a présent I’équation des cables gouvernée par la ddp transmembranaire
Var(z,t) en tout point du cable, en termes des densités de courants transmembra-
naires jys(z,t) précédemment exprimées en fonction des données physico-chimiques
et biologiques. Rappelons que I'on considére ici une seule dimension d’espace x. Les
structures ramifiées peuvent étre décrites suivant les mémes principes.

I11.2.1 La loi de Kirchhoff

On considére un élément de membrane neuronale, de forme cylindrique, de lon-
gueur dx, de rayon interne r, qui peut recevoir de I'extérieur un courant injecté de

densité I;n;(z,t), c’est & dire que le courant introduit est donné par courez(z,t) =
Iinj(z,t) de.

A
Y

dx

iq(z) est le courant longitudinal cytoplasmique, au point z. Son expression au
point x 4 dz est i,(z + dx). diys est le courant transverse sortant de I’élément dont
la densité a été calculée dans le chapitre précédent. Le courant total entrant sert a
charger le condensateur formé par la double couche membranaire. On a donc le bilan
suivant des courants entrant et sortant de 1’élément :

io(z) — io(z + dz) — dipg + Linj(z, t)de = 2(dQ) = (%) dC (D.8)



Dans cette expression, d() représente la charge électrique portée par chaque face
(intérieure et extérieure) de I’élément de membrane, & 'instant considéré ¢, dC' re-
présente la capacitance de cet élément. D’ou d@) = dC'Vj,. La surface latérale de
I’élément étant dS = 27r dz, divisons les termes droit et gauche de (D.8) par dS.
On obtient :

z'a(:c)—ia(:c—i—dm) dZM 'm,j ('7; t)dm ﬂaVM
2mr dx + 2rrdr ~  dS Ot (Dg)
Dans cette derniére expression, CZ—gf = ju =la densité de courant transmembra-

naire qui a déja été exprimée (chapitre II) alors que § dC = (C'yy est la capacitance par

unité de surface. Son expression est Cy = £ ol € est la permittivité de la membrane
(€ = epe, OU € = % est la permittivité du vide et €, est la permittivité relative
de la membrane de l'ordre de 8) et e est 1’épaisseur de la membrane (de l'ordre de
70Angstroms,1Angstrom = 1079 ). Cy; est de l'ordre de 1072F /m?. D’autre

part, le rayon cytoplasmique r est de I'ordre de 1000e.

En faisant tendre dz vers 0, le premier terme dans expression de droite de (D.9)
va tendre vers la dérivée (partielle) de i, par rapport & z, i.e. %. On a alors

1 Linj(z,t) oV,
ﬁ ] + 2]7rr C 6115\/[ (DlO)

On cherche en fait une équation pour Vjs. Dans (D.10), apparait ja qui a déja
été caractérisé en fonction de Vs (formule (D.7)), apparait également I;,; qui est a
priori connu. Il reste & exprimer le premier terme de droite. C’est ce que l'on fait &
présent.

I11.2.2 La loi d’Ohm
Elle va nous permettre de déterminer le courant cytoplasmique ¢, en fonction du

potentiel membranaire V. Soit 7, la densité de courant longitudinal donnant lieu &
ia. Autrement dit, on a i, = 7r?j, oil 7 est le rayon cytoplasmique.
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Associé au courant longitudinal interne a la cellule, de densité j,, il existe égale-
ment un courant longitudinal externe j.,; qui est généralement faible. Si on appelle
Eiet Eep les champs electriques interne et externe, on sait que les densités et les
champs sont reliés par la loi d’Ohm

Ja = OintBint (D]_l)
jea:t = Oegt Beat (D.12)

OU Oipt et Teye sont les conductivités du mileu cytoplasmique interne (constitué
d’ions en mouvement, donc conducteur de I’électricité) et du milieu externe égale-
ment constitué d’un fluide conducteur, porteur d’ions en mouvement.

On sait qu'un champ électrique E s’exprime en termes d’un potentiel par ﬁ =
—gradV, ce qui prend la forme simple suivante ici

Ejpy = —%int By = — st (D.13)
D’ou 'on déduit
Eing — Eegt = _%(Wnt - V:e;ct) = _6L£/I = U];Zt - fjfzzi (D14)

Le courant externe est négligeable devant le courant interne. L’expression (D.14)
devient alors
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B = Ri, (D.14)
ot Ryest la résistance longitudinale cytoplasmique (ou axoplasmique dans le cas
d’un axone) par unité de longueur. , = W = Pint # ol pint st la résistivité
(inverse de la conductivité) du milieu cytoplasmique interne. R, a les dimensions
d’une résistance par unité de longueur, de ordre de quelques 10°Qm 1.
En combinant les équations (D.10)et (D.14), on obtient I’équation des cables

neuronaur

s ot — ju + 2 = Oy T (D-15)
avec
v = i (Var) = 35 + Sk gr(Var) Vi = Vi) (D.16)

Le potentiel membranaire Vys(z,t) va étre obtenu a partir de ces deux équa-
tions ((D.15), (D.16)). Dans certains cas, comme par exemple le régime passif (les
conductances ioniques gy constantes, pas de processus actifs potentiel dépendants),
on pourra obtenir des solutions analytiques de cette équation, méme dans le cas ou
des ramifications sont introduites.

Quand des branches dendritiques seront le lieu de transports actifs, ce systéme
d’équations reste toujours valable. On associe dans un premier temps a (D.16) les dy-
namiques des conductances ioniques (comme par exemple dans le systéme de Hodgkin
Huxley, vu dans le chapitre C). Ensuite, on compartimentalise la branche comme on
va le voir plus loin.

Auparavant, on va établir les expressions des paramétres électriques (résistance,
capacitance, constante de temps,..) pour une branche de longueur donnée [ en fonc-
tion des paramétres qui ont été définis jusqu’a présent uniquement comme des quan-
tités par unité de longueur.

Ceci sera utile lors des simulations avec Genesis, programme cable , ol toutes ces
caractéristiques pourront étre modifiables. Les notations seront celles utilisées dans
le simulateur.
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IV. L’équation des cables dans le cas passif et les paramétres élec-
triques en fonction des dimensions des branches

IV.1 Le transport passif dans le cas de faibles stimulations

On pourra avoir un transport passif & travers la membrane quand les stimula-
tions extérieures Ijn;(x,t) seront suffisamment faibles pour que la ddp membranaire
Vi (z,t) soit proche de la ddp d’équilibre V3y ~ —75mV . Dans ces conditions, les
conductances gi(Var) considérées plus haut (voir par exemple (D.7)) seront proches
de leurs valeurs obtenues en faisant Vi (z,t) ~ V}. Autrement dit, pour de faibles
stimulations, on pourra admettre que :

gr(Var) = gx(Va) (D.17)
L’équation caractéristique de la membrane devient alors
g = gir + Sk ge(Viy) (Vir = Vi) (D.18)
Rappelons que jy; = 0 a I’équilibre membranaire, quand V3 = V) . Donc
0=jir + Sk gr(Var) (Vi — Vi) (D-19)

En soustrayant (D.18)et (D.19), on obtient

jv = Tk gx(Viy) (Ve = Vip) (D.20)
que 'on peut réécrire
i = 9% (Var — Viy) (D.21)
ou
9 = Zr 9x(Var) (D.22)
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IV.2 La résistance passive R,, transmembranaire.

La quantité g9, est appelée conductance transmembranaire. C’est une conduc-
tance par unité de surface (rappelons que jps est une densité de courant, cad un
courant par unité de surface).

La résistance transmembranaire correspondante Ry (en se conformant aux no-
tations de Genesis) est Ry = é. La résistance transmembranaire R,,, pour une

branche de longueur [ sera donc telle que ﬁ = gm = g4 2w rl. On a donc

R, = fu (D.23)

m = xdl

Ryest exprimée en Q, Ry est exprimée en Q.cm? (ordre de grandeur pour Ry,
10kQ.cm?). Ordre de grandeur pour [ : 0.005¢cm = 50um, pour le diamétre d'un
cable d = 2r :0.0001lcm = 1um.

IV.3 La capacitance C,, .

On a déja considéré la capacitance Cyy par unité de surface (voir (D.9) — (D10)).
Son expression Cyy = £ provient du fait que, 'épaisseur de la membrane étant bien
plus petite que le rayon cytoplsmique, si I’on prend un élément de surface sur la
membrane, le condensateur de forme cylindrique va apparaitre en fait comme plan
(voir figure ci dessous).

r=1000¢

On connait alors la capacitance d’un condensateur de surface S, de distance entre
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les plaques e, empli d’un milieu diélectrique de permittivité e. Cette valeur est C' =
%. D’ol I'expression pour Cyy.

La capacitance Cy, pour un élément (patch) de longueur [ et de diameétre d sera
donc

Cn =Cymdl (D.24)
Ordre de grandeur pour Cys : 1uF/cm?.
IV.4 La résistance axiale (ou longitudinale )R,

La résistance longitudinale, par unité de longueur R, a été définie plus haut
(D.14)-(D.15) : R, = pint —. Dans Genesis, p;,; est appelée résistance spécifique

72
et est dénotée R4. On se conformera & cette notation et on aura donc, pour une
branche de longueur [, une résistance longitudinale notée R, qui devient

R,=4Rs 5 (D.25)
Ordre de grandeur pour R4 : 0.1KC.cm. R, s’exprime en ().
IV.5 La constante de temps transmembranaire 7,,.
Cette constante donne une mesure de la vitesse avec laquelle le potentiel membra-

naire atteint sa valeur asymptotique quand un courant constant est appliqué. Elle
est donnée par le produit

T™m = Ry Cypy, = Ry Cyr = STAA; (D.QG)

IV.6 La constante d’espace A et la forme de I’équation des cables pas-
sifs.

Elle mesure le taux de décroissance du potentiel membranaire V() en fonction
de x quand un courant constant est appliqué en un point de la branche, en régime
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permanent d’otl I’absence de ¢ dans V).
Afin d’introduire ce parameétre, rappelons qu’en régime passif, l’'on a,

i = g% Ve — Viy)

En injectant dans I’équation des cables neuronaux (D.15), on obtient,

1 9*Vyu 0 I 4 Linj __ OV
2r R, 0x2 Im (VM VM) + 2r Cu ot

que P’on réécrit , en divisant les deux membres par g%, avec ¢, = ﬁ

1 62VM . _ 0 Itﬂ — OVu
21 RogSy 022 (VM VM) + 2mr Ry = RyCu ot

Dans cette équation linéaire, on considére la variable dépolarisation v, qui est la
différence entre le potentiel Vi, et la valeur du potentiel d’équilibre V) i.e.

Vo=V -V (D.27)

La constante d’espace A est la quantité telle que

2 _ 1
A= R (D.28)
et [’équation des cables neuronaux linéaire devient , avec r,, = Jfr—d
2 0%V _ .~ oV

On peut montrer, que quand on injecte en un point de la branche un courant
d’amplitude Iy pendant un temps suffisamment long pour que le régime puisse étre
considéré comme permanent, alors la solution de I’équation des cables (D.29), pour
un cable suffisamment long, est de la forme (voir figure ci dessous)

V(z) = Voexp — (12 (D.30)
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Vo= Laom (D.31)

V()

Y

Remarque : A2 s’exprime aussi sous la forme

A2 =

ISH

Ry (D.32)
oil d est le diamétre de la branche, Ry est la résistance transmembranaire ((g3,) ")
et R4 est la résistance spécifique longitudinale (en fait simplement donnée par la
résistivité cytoplasmique , voir plus haut).
D’autre part, la résistance d’entrée R;,, qui a été évoquée dans I'introduction, est
ici le rapport R;, = %)Q, rapport de la réponse potentielle maximum a l'intensité du
courant constant injecté .

V. La modélisation compartimentale pour la solution de I’équation des
cables .

On présente & présent un schéma pour obtenir les solutions de I’équation des cables,
de maniére numérique, se prétant & des simulations sur ordinateur. L’approche est
celle développée par Genesis également.
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On considére ici, pour simplifier, une arborescence dendritique composée d’une
seule branche, qui peut étre assez longue par rapport aux dimensions du soma. Cette
branche est connectée & un soma. La généralisation au cas de plusieurs branches est
possible.

Nous allons découper cette branche en compartiments de longueur [ (voir figure
ci dessous).

compart

% j =N

~

\ 7 T~
\
\ ~ /
\ ~

DD SDDDDDDDIOE

A N
J

L’équation des cables est

Rappelons que I;y,; est une densité de courant injecté, pouvant varier d’un point
a un autre et pouvant également varier dans le temps ¢ ,comme cela sera le cas pour
un contact synaptique. Donc, on pourra avoir Ij,; = Ijn;(z,t).

La résolution numérique de cette équation va se faire en approximant la dérivée
%27‘2/ par une différence. Si le découpage de la branche est effectué en compartiments
de longueur suffisamment petite [, alors en désignant

vj = V(13,1 j=1,2,...N

on aura les approximations suivantes
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%_Z(l%t)% %% j:172,....N—1

V14, 1) o Wzt lima) — (patera2) g 9 N1 (D.34)

2 2 149

L’équation des cables (D.33) sera donc approximée par

22 (vj+1+Ulj271—2vj) —v; + 'rmIinj(ja t) = Tm % (D34)

Multiplions les deux termes de cette relation par g—ﬁ, donnons A?par son expression

(D.32) cest a dire \? = %%—J‘A{, rappelons que r,, = % et que 7, = Ry Cy. On

obtient

ol Gppry 22 g 4 Ly(jt) = CuwdlGE (D.35)

Cette relation est en fait de la forme, en se reportant aux expressions des para-
métres R,, R,,, C,, valables pour des éléments de membrane neuronale de longueur
[ donnés plus haut :

ittt 220) - B 4 L) = Cn §=1,2,.N—1 (D.36)

La quantité I;,; étant une densité de courant injecté , [ I;;(j, t) est bien le courant
injecté dans tout le "™ compartiment & l'instant ¢. Il pourra étre dénoté I;. On a ainsi
obtenu un ensemble d’équations différentielles couplées qui peuvent étre intégrées
numériquement en discrétisant le temps .

D’autre part, cet ensemble de relations peut étre également mis en équivalence
avec un systéme électrique composé de résistances et de capacitances. C’est ce que
nous montrons a présent. Cette notion d’équivalence est mise a profit dans tous
les systemes de résolution de 1’équation des cables comme cela sera le cas pour le
simulateur Genesis.
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VI. Les circuits R—C équivalents pour les somas et cables dendritiques.

Le systéme d’équations (D.36) que nous avons obtenu plus haut, comme approxi-
mation compartimentale discréte de ’équation des cables neuronaux, est en fait le
systéme d’un ensemble de circuits de type R — C', en série et dérivation.

On considére ici, pour simplifier la présentation, le cas ou la branche dendritique
est découpée en 3 compartiments. Le cas plus général ne présente pas de difficultés.
Ces 3 compartiments sont connectés a un soma qui, nous le supposons, peut étre
ramené a un seul compartiment.

Le potentiel membranaire du soma sera donc uniformément réparti sur toute sa
surface alors que le potentiel dendritique ne sera pas distribué uniformément.

On considére le schéma suivant :

RSS S@)IS R —— () 1p R”% ::@IZ R”% -

B et I
777 777 777 777

\ , milieu externe-_ _ 7

Pour obtenir les équations donnant les potentiels Vg, V4, Vet V3 du soma et des 3
compartiments dendritiques, on considére les bilans en courants aux 4 noeuds du ré-
seau (indiqués par des petits cercles sur le schéma, ou le potentiel est successivement
Vs, Vi, Voet V3).

Au point ou le potentiel est Vs , on a :
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VicVs 4 Jo = C54s 1‘{—% (D.37)

Au point ot le potentiel est V; , on a :

—UVs Bl 4 = Cpd + - (D.38)
Au point ot le potentiel est V5 , on a :

VR0 4 [ = Cn % + 3= (D.39)
Cette derniére relation est & comparer a ’expression générale (D.36), déduite de

I’approximation des dérivées de I’équation des cables, pour le compartiment 5 = 2.
Enfin, au point ou le potentiel est V3 , on a :

Ve 4 [y = Cp i + (D.40)

Le programme Cable du progiciel Genesis permet la résolution de ces équations
couplées.

VII. Expériences de modélisation de cables dendritiques avec (Genesis
VII.1 le programme cable

Apres avoir donné les bases de la théorie des cables et de I'approche comparti-
mentale, en indiquant les divers paramétres précisant la structure et les propriétés
électriques des dendrites considérées, on va effectuer des “expériences” a l’aide du
programme Cable de Genesis.

Une fois qu’une copie du répertoire intitulé cable (sans C majuscule!) a été effec-
tuée dans son répertoire de travail, ’éxécution de cable.qg fait apparaitre les fenétres
suivantes :
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— =i control - O X

HELP I
Reset Defaults I
STOP I
OUIT I

Overlay OH

EESET I

STEP {nsec} || 50,

dtllﬂ'ﬂlﬁ I
Change Cell Paraneters I

Change Current In_jection
Change Synaptic Input

Change Integration Hethod

~—thangs Current Injection |
—_thanee Synoptic Tnput |
_Change Intcgration Hethod |

Cable Conpts, | | 0, I
—PddrRenove Plots |
—Conductance Plot Hidden |

Add/Renove Plots

Conductance Plot Hidden

22



— -i |inject_menu - 0O X

Current Injection OH

DISHISS I
Current {uH}l 0,0003, I

Delay {nzec}) || 0

i

Hidth {nsec} || 10

Conpartnent #0 = Sona
Inject Conpartment: ||Q& I

Le systéme considéré dans cable.g est celui d’un cable dendritique connecté & un
soma tel que celui développé dans le chapitre V. Le nombre de compartiments den-
dritiques, tous identiques ici, est modifiable. On peut injecter un pulse de courant sur
chaque compartiment (un pulse au plus!), en précisant le délay , la largeur temporelle
du pulse (width) et 'amplitude du pulse (current , en pA).

On peut également injecter des courants synaptiques. Ce cas sera cependant étudié
plus en détail dans le chapitre E, le cadre théorique restant inchangé.
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— i |param_menu O X

Cell Paraneters

DISHISS I
Specific ResistancesCapacitance

RH {Kohn*cn™2} || 10,

CH ‘uF/ch™2) || 1

F-%

FA {Kohm=cn) || 0.1

FoY

Comnpartnent length/dianeter

sona length {cn} || 0,005

sona dianm {cn) ﬂ.ﬂﬂﬁ&

cable compt length {c:n}”l].ﬂﬂﬁL I

cable conpt diam {cn} || 0,0001

Les paramétres de structure et électriques du neurone sont modifiables a ’aide de
boites de dialogue apparaissant dans la fenétre ci dessus.

Les graphes du potentiel membranaire, pour diverses injections de courant, éven-
tuellement en différents compartiments, a 1’allure suivante :
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scalel
Somna nenbrane potential ¥Ym (n¥)

Fati Sona
| ’ sona#0, 0
f zona#il. 1l
20 ; sona#0,?

15

Quand un courant est appliqué sur un temps assez long, un état asymtoptique
dit d’équilibre est atteint. La valeur prise par le potentiel dans cet état, quand la
stimulation est appliquée en terminaison de branche, décroit quand on se rapproche
du soma. Comment mesurer cette décroissance ?

Que représentent les valeurs maximum du potentiel membranaire du soma, sur
la figure ci dessus, en fonction des paramétres du systéme? Peut on prédire ces
comportements par inspection des solutions du systéme tel que (D.36)?

On va utiliser d’une part les résultats de la simulation et d’autre part le logiciel
zmaple qui intégrera les équations telles que (D.37) — (D.40) pour avoir un controle
complet de tous les parametres du systéme dans I’étude des évolutions des potentiels
membranaires.

25



VII.2 Exercices

Exercice 1

Sur la figure cidessous sont représentées les valeurs d’équilibre de potentiels mem-
branaires expérimentalement dans des neurones possédant des structures dendri-
tiques ramifiées comme celle qui est représentée ici. Quand une injection de courant
est effectuée sur la terminaison dite B, le potentiel mesuré dans les diverses branches
I, B, ', Cy jusqu’au soma S montre une décroissance.

A. Voltage Spread B. Time Development
100 :
I\ _B I
v P
10
ViV
1
0.5
0.1
0 0.5 1.0 0 0.5 1.0 15
distance (x/) time (t/tn)

Dans cable, prenez une dizaine de compartiments, mettez width a 100ms, déter-
minez le potentiel final atteint avec showfield.

Afin d’utiliser correctement cette fonction de Genesis qui permet de connaitre avec
une grande précision la valeur de toutes les variables du systéme, il est necessaire de
connaitre la nature de tous les objets manipulés par le programme.

On peut avoir acceés a cette information en éditant le programme lui méme, éven-
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tuellement en éditant des modules additionnels figurant dans le répertoire cable qui
sont utilisés par Cable.g et dont le nom apparait en téte du programme sous forme
de include ***module***

Une autre fagon d’opérer est de rechercher les divers objets en uilisant I'interpréteur
(en langant des commandes aprés le prompt genesis). La premiére commande est un
équivalent de Is du systéme d’exploitation Linux (compatible Unix) qui permet de
“hister” , d’afficher la liste des fichiers disponibles dans un répertoire.

Cet ordre genesis est [e qui produit

Cable > le

*proto output/
logtable cell /
input/

Cable >

L’objet qui nous intéresse est cell. On effectue ensuite ce cell, c’est ’équivalent de
cd nomderépertoire, ce qui produit :

Cable >

indiquant que 'ordre a été correctement enregistré. Puis, on effectue de nouveau
le , pour “lister” tous les objets disponibles attachés a ’objet cell. Ce qui produit, si

on a pris soin auparavant de créer des compartiments , par exemple 10 :
Cable > le

soma syn_channel
cable|0-9] solve
Cable >

Affichons les valeurs finales du potentiel du soma dans le compartiment # 0 (le
soma) ou bien celui de tout autre compartiment créé, par showfield cable[0] -all, ce
qui produit :

Cable 6 > showfield cable[0] -all

| /cell/cable |

x0y0z0 = ( 0.000000e+00 , 0.000000e+00 , 0.000000e+00 )
XyZ = ( 1.000000e+00 , 0.000000e+00 , 0.000000e+00 )
flags = 100

FUNCTIONAL

Clock [ 0] = 1.000000e-02
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2 incoming messages
2 outgoing messages

activation =0

Vm = 0.2461062229
previous state =0

Im =0

Em =0

Rm = 6366203

Cm = 1.570795007e-06
Ra = 63662.03125
inject =

dia =

len =0

initVm =0

Il est possible ainsi d’avoir la valeur exacte du potentiel en n’importe quel com-
partiment.

Tracez une courbe donnant les valeurs asymptotiques du potentiel, en courant
constant, en fonction du numéro repérant le compartiment. Comparez avec les ré-
sultats de la figure ci dessus.

Exercice 2

Dans cet exercice, on va considérer un modeéle constitué d’un seul compartiment
(soma). Exprimez I’équation du potentiel membranaire en fonction des divers para-
meétres Ry, Cy, R4 et des dimensions de structure diametre, longueur, ...

Appliquez un pulse de courant et exprimez le & ’'aide de fonctions d’Heaviside.
A Taide de ces expressions analytiques, utilisez zmaple et sa fonction ode (ordinary
differential equations) pour intégrer I’équation du potentiel et effectuer une repré-
sentation graphique.

Comparez aux résulats produits par cable de genesis.

Considéréz le cas d’un soma connecté a un compartiment dendritique de longueur
[ et effectuez le méme calcul.
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