Chap B. Genesis : General Neural Simulation System

Plan
I. Genesis : un progiciel pour la simulation neuronale
II. Genesis : caractéristiques de base
I11. Introduction aux exemples
IV. Introduction a l'interface graphique de Genesis
IV.1. Exécution de la simulation.
IV.2. Le tableau de controéle et les boites de dialogues
IV.3. Visualisation des résultats
V. Les éléments de base du langage Genesis

1 : tutoriall.g

2 : Exercice

I. Genesis : un progiciel pour la simulation neuronale

Aprés avoir indiqué les bases concernant les aspects numériques des simula-
tions, on va entreprendre 1’apprentissage du progiciel et de son langage & I’aide
de quelques exemples. Genesis signifie General Neural SImulation System et a été
développé au Californian Institute of Technology (Caltech), USA, depuis les an-
nées 85. On va donner maintenant une introduction aux exemples (ou tutorials)
ainsi qu'une démonstration de 1'utilisation de l'interface graphique.

Genesis est ce que 'on appelle un simulateur généraliste qui doit étre distingué
des simulateurs dits dédiés. Ces derniers, écrits dans un langage de programmation
tels que C par exemple, réalisent des taches particuliérement bien ciblées. Les
codes numériques obtenus peuvent donner lieu & des éxécutions plus rapides que
celles obtenues par des simulateurs tels que Genesis. Cependant, les temps de
rédaction des programmes de simulation peuvent étre comparables.

De plus, la modification d’un code numérique dédié pour tenir compte de nou-
veaux constituants, nouvelles architectures dans les arborescences dendritiques ou
les répartitions de neurones dans les réseaux peut s’avérer impossible alors que
Genesis (et d’autres simulateurs du méme type) permet de telles transformations
de facon relativement aisée et performante.

D’autres avantages peuvent étre mis en avant pour de tels simulateurs tels que
la possibilité de transporter le code (le programme) sur des ordinateurs dits pa-
ralleles ou les opérations se font & une plus grande vitesse, ou bien la possibilité de
changer aisément de techniques d’intégration numérique ou de créer de nouvelles
formes d’illustration graphique des résultats obtenus.

La possibilité d’une sorte de standardisation de la modélisation neuronale peut
elle méme étre utile dans la mesure ou elle permet une meilleure communica-
tion entre les développeurs dans ce domaine. Ainsi, ’équipe de Caltech a mis en
place un systéme, dénommé BABEL, qui est constitué d’une base de données de
programmes de type Genesis qui peut étre utilisée par les membres du groupe.

II. Genesis : caractéristiques de base

®Genesis a été développé pour réaliser la simulation d’ensembles neuronaux
biologiquement réalistes. Trois objectifs ont été poursuivis : le simulateur doit
permettre de faire un choix dans le niveau de complexité, depuis le neurone simple
isolé & un compartiment jusqu’aux réseaux de neurones a plusieurs compartiments.

I1 doit étre également ouvert dans son développement propre et offrir la possibilité
de communication pour optimiser ’effort de modélisation.

®La flexibilé de Genesis, en tant qu’outil de simulation, réside dans le type
de programmation utilisé appelé orienté objet . Le simulations sont constituées
de structures modulaires, sortes de “briques”, chacunes de ces briques réalisant
une fonction bien précise, chacune de ces briques étant en relation avec les autres
briques de facon standardisée. On peut ainsi choisir un niveau de complexité en
choisissant les briques adéquates. L’utilisateur peut assembler ces briques a sa
guise. De la méme facon, ’adjonction de nouveaux modules construits a ’aide de
ces briques, peut donner lieu a de nouvelles possibilités de simulation.

®L’interface de Genesis est constituée de deux parties. Le niveau le plus bas est
le SLI, ou Script Language Interpreter. Ceci est un langage de programmation de
type interpréteur, comme celui du systéme UNIX lui méme, avec un nombre im-
portant de commandes. L’interpréteur peut lire les programmes SLI (les scripts)
soit de facon interactive a partir du clavier, ou bien a partir de fichiers. Il existe
une interface fraphique dénommée XODUS (X-windows Output and Display Uti-
lity for Simulation). Cette interface est un moyen de haut niveau et trés convivial
pour faire du développement de programmes et controler leur éxécution. XODUS
est constitué de modules graphiques qui participent de la méme démarche de pro-
grammation des objets neuronaux, sauf qu’ils réalisent des fonctions graphiques.

III. Introduction aux exemples

Ces exemples traiteront de simulations se situant & plusieurs niveaux, du neu-
rone isolé aux petits sytémes. Ces exemples peuvent donner lieu & des expérimen-
tations numériques sans connaissances particuliéres du langage. Par le suite, nous
verrons comment fondamentalement modifier ces scripts pour réaliser vos propres
simulations. Les exemples seront décrits, par chapitre. Dans ce méme chapitre, le
script Neuron (en fait neuron.g) permettra de prendre contact avec le simulateur.
Les simulations montreront, pour un modéle neuronal composé d’un soma et de
deux dendrites en série, les réponses a diverses sortes d’impulsions électriques,
sous le seuil de déclenchement de potentiels daction et au dessus du seuil.

Le chapitre suivant Chap C, est consacré a des expériences et & une modéli-
sation initialement développée par Hodgkin et Huxley (HH) pour comprendre la
dépendance des conductances ioniques et leur évolution temporelle, ces conduc-

tances intervenant de maniére cruciale dans la génération des potentiels d’action.
Dans l'exemple dénommé Squid (le calmar!), en référence a ’animal ayant été
utilisé par ces auteurs pour mener leurs recherches sur le potentiel d’action, des
expériences simulées dites a courant imposé et tension imposée, telles qu’elles sont
réalisées in vivo en laboratoire, seront possibles.

Dans le chapitre D, on aborde les propriétés de “cable” des structures axonales
et dendritiques constituées de compartiments dits passifs, c’est a dire ne posseé-
dant pas de canaux ioniques actifs, de type (HH). Malgrés cela, de nombreuses
informations peuvent étre obtenues en faisant appel aux propriétés passives, en
particulier en ce qui concerne la morphologie neuronale.

Le chapitre suivant, ChapE, combine des éléments des deux chapitres précé-
dents pour construire un modéle neuronal multicompartimental avec propriétés
actives. L’exemple traité est dénommé Neuron (déja introduit). Il introduit les
modéles canaux synaptiquement activés. La notion de sommation temporelle pro-
venant de plusieurs entrées synaptiques sera développée. Le systéme est composé
de plusieurs compartiments dendritiques spatialement séparés, contenant des ca-
naux synaptiquement activés de nmaniére excitatrice et /ou inhibitrice et un soma
possédant des canaux Sodium et Potassium de type (HH).

Dans le chapitre F, deux simulations seront réalisées qui auront pour but de
montrer comment des interactions entre différents types de canaux potentiel dé-
pendants peuvent entrainer des potentiels d’action de structure différente plus
complexe (avec des patterns différents) que ceux engendrés par des modéles de
type (HH). Ainsi, dans une simulation du comportement d’un soma de cellule
“pacemaker” de mollusque, une combinaison particuliére de canaux permettra
d’engendrer des “bursts” périodiques de potentiels d’action. Dans une seconde si-
mulation, relative & une cellule pyramidale de I’hyppocampe, les bursts résulteront
d’une interaction entre le soma et des régions dendritiques lointaines.

Le chapitre G introduit pour la premiére fois les réseaux de neurones. On
considérera un réseau simple qui représentera un Générateur Central de Patterns
(CPG, en anglais). Des circuits de ce type ont été mis en évidence dans les méca-
nismes de controle d’activités rythmiques, pour un nombre important d’espéces
animales. Le modéle de CPG considéré ici est plus schématique et abstrait que
le systéme réel qui pourra cependant produire les mémes patterns. On s’intéresse
au role joué par les interactions entre les quatre neurones dont la structure est
identique a celle uitlisée dans le chapitre E.

IV. Introduction a l'interface graphique de Genesis

Avant de commencer I’étude des exemples, il est tout d’abord nécessaire de
formuler les bases du fonctionnement de l'interface graphique, XODUS. A I'aide de
cette interface, il sera en fait possible de faire un certain nombre de simulations en
entrant de nouveaux parameétres sans pour cela intervenir sur les scripts. XODUS
permet de visualiser, de plusieurs facons, I’état de plusieurs variables de caractére
neurobiologique. Afin de se familiariser avec XODUS, comme cela a été annoncé
plus haut, le script Neuron va servir de support, et sera décrit plus en détail au
chapitre E.

IV.1 Exécution de la simulation.

Les fichiers utiles pour effectuer les simulations se trouvent dans un répertoire
particulier dans lequel on pourra avoir accés pour obtenir des informations (textes
de programmes, conseils d’utilisation, bibliothéques, etc). Ce dernier se dénomme
genesis. (L’exécutable c.a.d le logiciel lui méme, porte le méme nom, ce qui peut
induire en erreur). Pour savoir oul se trouve le répertoire genesis (on dira la dis-
tribution genesis), on peut éxécuter la commande Linux suivante (compatible
Unix) :

find . -name genesis -print

Ceci nous indique la localisation du répertoire genesis et de ’exécutable éga-
lement. En séance de TD-TP, on copiera un répertoire particulier appelé neuron
dans son propre répertoire , on lancera genesis et éxécutera le programme Neu-
ron.g . Les programmes éxécutables dans genesis portent ’extension .g . Pour
cela, apres avoir entré au clavier genesis et s’étre assuré d’étre dans le répertoire
possédant le programme Neuron.g (voir TD), on entre au clavier Neuron.g , avec
N majuscule (!).

IV.2 Le tableau de contréle et les boites de dialogues

Il apparait le panneau suivant et d’autres fenétres sur lesquelles les résultats
de la simulation vont se dérouler.

— =@ control

Dend #1 Exc.

Inputs I Defaults I Overlay DFFI Plot Sona I Sona Inj | 0.0002,

Dend #1 Inh.

STEP {Hsec}l 80, Cable Eunpts.l 0 I Dend 1 Injl 0 I
S I]EI'Id #2 EHC.

dt {nsec}l 0,01, I Dend 2 Iﬂjl 0, I Dend #2 Inh,

Figure 1

Les fenétres sont des exemples de formes (forms) graphiques créées par genesis.
Comme toute les autres fenétres utilisées par X Windows, qui est le systéme
de fenétrage général utilisé ici par le systéme d’exploitation Linux, les fenétres
peuvent étre déplacées, redimensionnées a ’aide de la “souris”.

Les différents éléments apparaissant sur le panneau s’appellent bouton (but-
ton), label (label), boite de dialogue (dialog), bascules (toggle). Les boutons HELP
(Aide), RESET (Remise a zéro), STOP et QUIT (quitter) sont présents dans
toutes les simulations. En cliquant sur I'un de ces boutons avec la souris gauche,
une action est opérée.

Sous le label (ou intitulé) Injection Current, se trouvent 3 boites de dialogue qui
permettent de connaitre les quantités de courant injectés dans le neurone considéré
ou pour modifier ces valeurs directement du clavier. Le modéle neuronal est ici le
suivant :

— ¥ |inputs - 0O X

| oo

[njection
[uerent

AEa

Oﬂendrite 7

Dendrite 1°]

Exc. 1nh. Exc. Inh,

Figure 2

Pour injecter un courant donné dans le soma, on modifie la valeur apparaissant
dans le “dialogue” Soma Inj. Pour faire cela, on positionne avec la souris le curseur
dans la boite correspondante. Ensuite, on utilise les fléches —et <—se trouvant sur
le clavier pour déplacer le signe " . Pour supprimer des chiffres, on utilise la touche
Delete sur le clavier.

Pour enregistrer ces modifications, il est impératif de fonctionner la touche
Return (Entrée) au clavier. Ne pas oublier cette opération, cela est souvent une
source d’erreur. On peut également enregistrer en cliquant dans la boite contenant
le label correspondant (ici sur Soma Inj).

Les dialogues intitulés Overlay OFF et Plot Soma sont des exemples de bas-
cules. Une bascule permet de passer d’un état & un autre. Par exemple, en cliquant
sur Ouerlay OFF , on passe & Overlay ON qui permet de représenter le graphique
suivant dans la méme fenétre que le graphique précédent. On peut ainsi comparer
les résultats de deux simulations différentes.

En cliquant sur le bouton HELP, on fait apparaitre dans une fenétre, la figure
4 ci dessus qui illustre le modéle neuronal considéré. De maniére générale, dans les
exemples suivants (ou tutorials), des informations concernant la simulation sont
disponibles dans ces fenétres.

— =i Help Menu - O X

Help Henu

Uzing Help I
Running the Sinulation I
Heuron Inputs I
Hodel Paraneters I
Things to Try I

DONE |

Figure 3

Par exemple, en cliquant sur le bouton Running the Simulation, un texte ap-
parait (en anglais) décrivant le modéle (figure 5 ci dessous). L’introduction de ces
commentaires, sous cette forme, avec des possibilités de déroulement de texte, est
intéressante pour 'utilisateur. Par le suite, dans le développement de programmes
par les étudiants(es), cette approche sera encouragée.

— - | running

Uze the scroll bar at the left to nove through the text

RUHHIHG THE HEUROH TUTORIAL STHULATION

{Don"t forget to mnove the curszor into thiz window and use the nouse
buttonz to scroll through thiz text.)

DESCRIPTION OF THE HODEL

The help nenu selection "Heuron Inputz" shows the configuration of the m
neuron, which consists of three conpartments, The "Somna" represents the
axon hillock of the sona where action potentials are generated. This
conpartnent contains two ionic channels for sodiun {Ha) and potassiun {K.
with voltage dependent conductances obeying Hodgkin=Huxley kinetics. The
two dendritic compartments, "Dendrite #1" {closest to the zomal), and
"Dendrite #2" each have a chenically activated excitatory channel and
inhibitory channel. The paranetersz which deternine the equilibriun
potentials of the channels and the tine dependence of the channel
conductances nay be nodified by a sub-nenu of the Cell Paraneters nenu,
which is described in the "“Cell Paraneters"™ selection of the help nmenu,

The dendrite channel paramneters are currently set so that the excitatory
channel iz a non—-selective szodiundpotassiun channel and the inhibitory

Figure 4

A T’aide du bouton Models Parameters, le schéma électrique de I'un des com-
partiments du systéme est indiqué (figure 5).

— - |params

i Uze the scroll bar at the left to nove through the text
CELL PARAHETERS

The equivalent circuit for each cell compartment looks like this:
n

o_

| | | | |

| | | | |

| % bt b} |

— | — — ! PN S

| Gex M Ginh % Bn % FRN O Cn
| | | | "1/ |

| | | | W/ |

| Eex ==—=- Einh === Eleak =——- | Iinjectl

I mmmm— emm—— eee——— | |

/ | | | | |

% I = I__ | |

/ Ra

%

|

|

o

Figure 5

En fait, le modéle neuronal considéré ici (figure 2), est composé d’un com-
partiment soma et deux compartiments dendritiques qui sont connectés par des
résistances axiales (les résistances Ra sur la figure 5). Le soma posséde des canaux
potentiels dépendants du type Hodgkin Huxley (voir plus loin). Les compartiments
dendritiques, ou dendrites, possédent des canaux activés synaptiquement qui ré-
pondent & des potentiels d’action (ou spikes) appliqués aux synapses. Ces trains
de spikes représentent des entrées possibles délivrées a partir d’axones d’autres
neurones. Cette simulation Neuron.g sera reprise par la suite pour étudier les
propriétés de ces canaux synaptiques.

Sur la figure 2, on peut voir que 'on peut injecter des pulses de courant
(Injection Current) dans I'un quelconque ou plusieurs compartiments. On peut
également connecter des trains de spikes a I'une ou plusieurs synapses avec une
amplitude spécifique (ou poids) sur chaque synapse. Ces paramétres (choix des
synapses, amplitude, courants injectés) sont modifiables & I’aide du bouton Inputs

10

du tableau de controle.

— 4 Input Timing {msec) - 0O X

Input Tining {nsec)

DOHE I
Source H ﬂElﬂHl 10,

Hidth | a0,
Interval | I 10,

Source B Delay | 20,
Hidth | a0,
Interval | I 10,

Injection ﬂElﬂHl 20
I-Iidthl 40,

Figure 6
Le bouton Cable Compts, dans le panneau de controle (control panel), il est
possible de modifier le nombre de compartiments “passifs” (c.a.d sans canaux po-
tentiel dépendants, pas de conductance ionique variable) éventuellement présents
entre les deux compartiments dendritiques. Ceci permet de mesurer ’effet d’en-
trées sur le neurone qui sont spatialement séparées.

IV.3 Visualisation des résultats

. En utilisant les valeurs par défaut des paramétres, on obtient les figures sui-
vantes, par lancement de la simulation & ’aide du bouton STEP

11

— i | somagraphs

O X

SEElEIE__

Hodgkin-Huxley Activation Paraneters

= T3

10 E‘ﬁﬁL 30 q;\ 50 r&h Py TR |

Ecalel
L0

0,0008 —
0, 000G —
0, 0004 —

0, 0002

Sona GHa and GK {n5}

i

10 20 30 40 50 60 79, 0

scalEI

q40

20

']_

=20 —

40 -

=60 —

Somna nenbrane potential ¥Ymn (n¥)
sona

-80 —

=100 3

L

10 20 30 d0 50 60 79, 80

Figure 7

Ne pas oublier de faire RESET avant cette opération. Ceci efface tous les gra-
phiques présents et réinitialise le processus. La valeur indiquée dans le dialogue

12

STEP indique le temps maximum de la simulation (ici 80 ms), qui s’effectue avec
des pas de temps de 0.01ms. En fait, il est possible dans Genesis de visualiser
toutes les variables du systéme. Par exemple, sur la figure 7, sont représentées les
variations de potentiel membranaire V},, au soma montrant des potentiels d’action
produits et les variations de conductances Sodium et Potassium correspondantes.
Les parameétres de Hodgkin Huxley de ces conductances sont également visualisés.
Ces parameétres seront introduits plus loin.

L’interface XODUS permet d’avoir un controle souple des graphes (ou gra-
phiques) qu’elle produit. Par exemple, les échelles de ces graphes peuvent étre
modifiées en cliquant sur sur le bouton SCALFE , puis en entrant la valeur souhai-
tée et en pressant le bouton DONE.

V. Les éléments de base du langage Genesis
1 : tutoriall.g

Dans un premier temps, on copie le script intitulé tutoriall.g, se trouvant dans
ResNeur, dans son répertoire de travail.

Ce script guide l'utilisateur dans une bréve introduction & Genesis, en utilisant
les éléments de base du simulateur pour créer et éxécuter une simulation simple
d’un compartiment passif.

On copie le script dans son propre répertoire. En cliquant sur 'icone intitulée
Home se trouvant sur le “bureau”, on peut effectuer cette copie.

On peut visualiser le texte de tutoriall.g par la commande more que 1'on
tape aprés le “prompt” § présent dans une fenétre de travail (ou console). On
peut également lancer le progiciel Genesis en tapant \genesis et ensuite utiliser la
méme commande more.

genesis #33 > more tutoriall.g (affichage du texte du programme)

//genesis script pour une simulation simple d’un neurone composé d’un seul
compartiment passif (pas de canaux ioniques, stimulation faible par courants in-
jectés)

Les mots réservés, non modifiables par I'utilisateur, sont de couleur différente.

// : ce symbole signifie que le texte qui le suit est un commentaire, qui ne sera
pas réalisé lors de 1'éxécution.

13

// création d’un élémént parent. “neutral” est un objet du langage Genesis
// et “cell” est un nom pour cet objet fourni par l'utilisateur. Le symbole /
/ /signifie que cet objet se trouve & la racine.
create neutral /cell

// création d’un objet “compartment” pour cette cellule dénommeée “cell”. On
crée un compartiment somatique.

create compartment /cell /soma

Cet objet compartimental posséde certaines caractéristiques, définies dans des
“champs 7 (“fields”). On peut avoir accés & ces champs par lordre showfield
(voir plus loin). On affecte des valeurs a ces champs par l'ordre “setfield”. Il a été
dénommé /cell /soma par 'utilisateur .

// set some internal fields

setfield /cell/soma Rm 10 Cm 2 Em 25 inject 5

// Création et affichage d’un graphique dans une “forme” (objet graphique).
/data et /data/voltage peuvent avoir leur nom modifié par 1'utilisateur.

create xform /data,

create xgraph /data/voltage

xshow /data

// On envoie un “message” depuis 1'objet somatique (/cell/soma) vers 1’ob-
jet graphique /data/voltage. Le titre du graphe est voltage. On représente dans
I’exemple qui suit les variations dans le temps du potentiel membranaire de 'objet
/cell /[soma quand un courant de 5 pA est injecté dans ce soma. En effet, parmi
les champs accessibles figure ce potentiel (voir plus loin avec showfield) dénommé
Vm. *volts signifie que la courbe représentant Vm sera appelée Volts. Elle sera de
couleur rouge. De la méme fagon, la courbe repésentant le courant injecté (ici une
constante) sera appelée current. Elle sera de couleur bleue.

addmsg /cell /soma /data/voltage PLOT Vm *volts *red

addmsg /cell /soma /data/voltage PLOT inject *current *blue

// make some buttons to execute simulation commands

// On crée des boutons pour éxécuter certaines commandes Genesis. Le bou-
ton RESET (mot défini par I'utilisateur) s’éxécute a 1’aide de l'ordre “reset” . La
syntaxe est celle indiquée, & ’aide du mot script, précédé de -. Reset signifie I'ini-
tialisation du processus. Cet ordre reset doit étre éxécuté a chaque ouverture de la

14

fenétre graphique. De méme, 'ordre RUN (mot défini par I'utilisateur) s’éxécute
par le script “step 1007, qui signifie que la simulation s’effectue sur 100 pas de
temps, la longueur de ces pas de temps pouvant étre modifiée. Avec le script quit,
on quitte Genesis.

create xbutton /data/RESET -script reset

create xbutton /data/RUN -script "step 100"

create xbutton /data/QUIT -script quit

check // On effectue un controle de la consistence des ordres envoyés.
reset // On initialise chaque élément, avant éxécution.
// Fin du texte du programme
— - data - O X
voltage
1007 volts
current
80 1
B0 -
40 -
20
071 " 1 " 1]
L 20 40 60 80 100
RESET I
RUN
QUIT I _

Dans ce qui suit, on montre comment avoir accés aux divers champs des objets
construits dans le programme précédent (on peut dire aussi le script précédent).

15

genesis #34 > showtfield /cell /soma -all

Ceci est la réponse :

[/cell /soma |

x0y0z0 = (0.000000e+00 , 0.000000e+00 , 0.000000e+00)
XyZ = (. 0.000000e+00 , 0.000000e+00 , 0.000000e+00)
flags = 80

FUNCTIONAL

Clock [0 | = 1.000000e+00
0 incoming messages
2 outgoing messages

activation =0

Vm = 74.66310265
previous _state = 74.64582955
Im =0

Em = 25

Rm =10

Cm =2

Ra =

inject =

dia =

len =

initVm = 25

La valeur de activation=0 signifie qu’aucun spike a été émis. La valeur de Vm
indiquée est celle correspondant au dernier pas de temps de la simulation. Pre-
vious_state correspond a la valeur de Vim, 1 pas de temps avant la fin. La valeur de
Im correspond au courant transmembranaire, & la fin de la simulation. La valeur
du courant injecté est de 5 pA. Rm et Cm sont les résistances membranaires et
capacitances transmembranaires de ce compartiment, considéré comme ponctuel
(Ra, résistance longitudinale nulle, de méme que dia (diameétre) et len (longueur)).
Em est la fem d’équilibre et Vm a pour valeur initiale cette valeur Em. En fait,

I’équation de la membrane est :
O W — (“Vot+En)
m@ — T Ry
genesis #35 >

16

On peut modifier, dans le cours de la simulation, “en ligne”, des valeurs des
paramétres entrant dans la définition des caractéristiques du soma, par setfield ..
entré directement au clavier, sans modifier le texte du programme. Ceci permet de
faire des tests, avant d’éventuelles modifications. Faire reset avant de faire RUN.

genesis #43 > setfield /cell/soma Em 30 inject 6 Rm 12 Cm 3

OK

genesis #44 > showfield /cell /soma -all

activation =0

Vm = 97.52329027
previous state = 97.39719399
Im =0

Em =30

Rm =12

Cm =3

Ra =0

inject =6

dia =

len =0

initVm — 30

D’autres manipulations par des ordres éxécutés depuis le clavier.
genesis #56 > reset; step 200 (execution de 200 pas a partir de t=0 et
affichage)
time = 200.000000 ; step = 200
completed 200 steps in 0.000000 cpu seconds
genesis #57 > step 100 (execution de 100 pas a partir de t=200 et affichage)
time = 300.000000 ; step = 300
completed 100 steps in 0.000000 cpu seconds
genesis #59 >

2 : Exercice

Lors de I’éxécution de la commande QUIT, on quitte Genesis. Afin de pouvoir
éxécuter un autre script sans sortir de Genesis, on va remplacer la commande :

17

“create xbutton /data/QUIT -script quit” par “create xbutton /data/QUIT -script
“hidegraphics / 7 et sauver le nouveau script, dans son répertoire de travail, avec
un nouveau nom, par exemple passl.g

La commande “more” considérée plus haut permet d’afficher le texte du script
sans pouvoir le modifier. Pour pouvoir modifier le texte, il faut I’éditer. Il est
necessaire d’activer un éditeur de texte existant sur le disque (par exemple kedit).

Afin de faciliter ce qui suit, il est préférable d’utiliser les possibilités offertes par
le dispositif multiécrans. On active donc un nouvel écran (dans la barre inférieure
des menus), on ouvre une fenétre de commandes d’ordres Linux, on se positionne
dans son répertoire et on lance kedit en tapant simplement >kedit&.

Ici, > désigne le “prompt” qui est créé automatiquement. On ouvre alors (ordre
open, dans le menu file) le fichier que 'on désire éditer, ici tutoriall.g. On peut
faire également >kedit tutoriall.g&. Le signe “&” permet de lancer le logiciel kedit
et de “reprendre la main “ pour éxécuter, éventuellement une autre commande.

La modification du texte de tutoriall.g (pour donner passl.g) porte sur I'intro-
duction de l'ordre (du langage Genesis) dénommé “hidegraphics”. Cet ordre est en
fait un script particulier qui a été inséré dans une bibliothéque dénomméé “bib1.g”
qui se trouve dans le répertoire ResNeur. Il est necessaire de faire une copie de
cette bibliotheque dans son propre répertoire.

I1 faudra ensuite “s’attacher” cette bibliothéque en inscrivant, en téte de son
propre programme, l’expression suivante : include bibl.g

18

