Chap A : Modélisation des Systémes Neuronaux

I. Introduction

Nous assistons depuis quelques années a un développement important de concepts
et méthodes utilisant les outils informatiques pour comprendre comment fonc-
tionnent les sytémes neuronaux. Les résultats expérimentaux, de plus en plus
nombreux, exigés par une connaissance détaillée au niveau physiologique, s’avérent
en fait insuffisants pour avoir une compréhension suffisante des mécanismes céré-
braux.

La modé¢lisation s’impose alors comme un outil indispensable pour ’expérimen-
tateur. Ainsi est apparue depuis quelques années une nouvelle discipline appelée
Neuroscience Computationnelle. On peut estimer que ’approche modélisatrice
peut étre une aide importante dans I’étude de la fagon avec laquelle le systéme
nerveux fonctionne.

Les informations expérimentales, qui ne sont plus collectées pour analyser seule-
ment la structure du systéme, sont analysées dans ce nouveau cadre pour tenter
d’interpréter les aspects fonctionnels. Ainsi, I'interaction entre I’expérience et la
modélisation sur ordinateur devient elle de plus en plus active.

Ce cours est une introduction a ’utilisation du progiciel Genesis (General Neu-
ral Simulation System) qui a été développé par James M. Bower et David Beeman
(Californian Institute of Technology) et qui s’inscrit dans cette démarche. 11 est
inspiré du livre de ces auteurs : The book of Genesis, Springer Verlag, 1995. On
distinguera deux parties.

Dans un premier temps, on décrira quelques exemples de programmes qui ser-
viront de guides. Des neurones isolés ainsi que des systémes en interactions seront
alors considérés. Chaque chapitre, dans cette partie, sera composé d’une présen-
tation des bases théoriques necessaires a la compréhension du programme.

Ces questions pourront étre également étudiées dans des livres d’introduction
a la Neuroscience (voir par exemple : H. Tuckwell, Introduction to Theoretical
Neurobiology, Cambridge University Press).

Associées a cette présentation des principes de base neurobiologiques, ces cha-
pitres introduisent également des concepts généraux de la modélisation elle méme.
Il ne sera pas necessaire de posséder des connaissances spéciales dans la program-
mation sur ordinateur pour réaliser ces simulations.

L’approche cependant nécessitera d’avoir un bon controle sur la nature des



résultats obtenus, par exemple tel comportement ou tel autre n’est il pas simple-
ment di & un pas d’intégration numérique suffisamment petit, ou bien tel systéme
ne fonctionne t’il pas de maniére équivalente avec des constituants plus simples,
etc..

Dans une deuxiéme partie, Genesis sera présenté comme un langage de pro-
grammation pour la simulation neuronale. En fait, les mémes thémes que dans la
premiére partie seront abordés.

Chaque chapitre permettra de modifier et construire les simulations effectuées
dans le chapitre précédent, permettant de considérer des systémes de plus en plus
élaborés.

Ceci est rendu possible par 'organisation en modules de Genesis. Alors, il sera
possible de modifier les exemples de la premiére partie et les utiliser comme point
de départ pour de nouvelles simulations.

II. La notion de compartiment
I1.1. Modéliser des neurones

La figure ci-dessous montre une cellule pyramidale telle qu’elle aurait pu étre
dessinée par Ramon y Cajal. Nous voudrions modéliser cette cellule, aussi bien en
tant que cellule isolée que faisant partie d’un ensemble de neurones en interaction.
Cette figure montre la structure en forme d’arbre des dendrites, ces derniéres
recevant des entrées synaptiques d’autres neurones.

Des canaux ioniques synaptiquement activés dans les dendrites créent des po-
tentiels postsynaptiques qui, nous le supposons ici pour raison de simplicité, sont
propagés de maniére passive vers le soma ol des canaux ioniques potentiels dé-
pendants peuvent éventuellement créer des potentiels d’action.

Dans la plupart des cas, ces canaux sont concentrés prés de la base du soma
dans la région appelée zone de hillock, prés de 'axone. Le long axone, au bas de la
figure, permet la propagation des potentiels d’action vers les branches terminales
qui forment synapses avec d’autres neurones.

Dans certains cas, les neurones peuvent avoir des canaux ioniques potentiel
dépendants dans leurs dendrites. Ceci, non seulement complique leurs propriétés
électriques, mais entraine ue dynamique plus complexe des neurones.
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I1.2. L’approche compartimentale

Afin de modéliser le neurone et ses propriétés électriques, la méthode la plus
simple consiste a le diviser en un nombre fini de compartiments anatomiques
interconnectés. La figure ci dessus montre un modéle simple ol le neurone est
divisé en plusieurs compartiments dendritiques, un soma et un axone.

Le comportement électrique de chaque compartiment est ensuite régi par des
équations décrivant un circuit électrique équivalent (voir plus loin), en tenant
compte des interactions entre les compartiments. Dans ce type de modéle com-
partimental, chaque compartiment doit étre suffisament petit pour que le potentiel
puisse y étre considéré comme uniformément réparti.

I1 se peut que le modéle doive étre constitué d’un trés grand nombre de compar-
timents pour reproduire correctement les résultats expérimentaux. Par exemple,
des simulations récentes de cellules de Purkinje, ont necessité 4 a4 5 milliers de
compartiments et 8 miliers de canaux ioniques. Un schématisation du modéle
apparait sur la figure suivante.



I1.3. Les systémes cylindriques équivalents

Dans certains cas, il peut étre judicieux de modéliser les neurones avec un
nombre restreint de compartiments avec des potentiels non uniforméments répar-
tis.

Des modéles de ce type peuvent étre utiles pour étudier les propriétés électriques
de base des cellules ou bien pour considérer des réseaux de neurones de petite
taille.

Des systémes de ce genre qui possédent certaines propriétés particuliéres (comme
la loi en puissance 3/2 pour les variations des rayons des cylindres dendritiques
dans la théorie de Rall, voir plus loin) et qui de plus ne possédent pas de conduc-
tances actives (cad pas de canaux potentiel dépendants) peuvent étre transformés
en des systéemes équivalents plus simples.

Par exemple, une structure complexe dendritique avec branchements peut étre
ramenée & un seul cable dendritique linéaire. Cependant, en général, quand la
complexité de la physiologie ou de ’anatomie du neurone augmente, il sera neces-
saire de développer le modéle multicompartemental.
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I1.4. Modéles avec un seul ou un petit nombre de compartiments

Dans le cas ot un grand nombre de neurones doivent étre disposés dans un
réseau, les capacités de résolution numérique necessitent de modéliser les neurones
avec un seul compartiment ou bien avec un petit nombre de tels compartiments.

Par exemple, une simulation avec Genesis du cortex olfactif utilise un réseau de
4500 neurones constitués de cellules pyramidales semblables & celles de la figure
ci dessus.

De tels modéles simplifiés de neurones peuvent ainsi reproduire correctement
des résultats expérimentalement observés.

Autre exemple : un neurone monocompartimental dans un réseau de taille res-
treinte pourra reproduire le comportement de certains “pacemaker” chez les in-
vertébrés.

D’autre part, et & contrario, il se peut que de nombreuses et importantes “opéra-



tions ” soient réalisées dans le systéme dendritique complexe de certains neurones.
Dans ce cas, il faudra avoir recours a des modeéles comportant un grand nombre
de compartiments.

ITI. Circuit équivalent d’un seul compartiment

On décrit a présent, avec plus de détail, las bases de la modélisation compar-
timentale. Ceci doit étre considéré comme une introduction trés sommaire de la
modélisation neuronale et sera revu plus loin.

Les membranes neuronales se comportent comme des circuits électriques avec
capacitance, résistance (ou conductance) source de tension. Ces propriétés consti-
tuent ce qu’il est d’usage d’appeler les propriétés passives qui sont responsables de
la facon avec laquelle les impulsions électriques se répartissent le long de ’arbre
dendritique.

L’introduction & la modélisation neuronale necessite I’étude des propriétés pas-
sives. Par le suite, les propriétés actives liées aux conductances ioniques potentiel
dépendantes seront introduites. Si les propriétés passives ne sont pas correctement
prises en compte, des résultats incorrects peuvent étre obtenus apreés 'introduction
des conductances actives.

La figure ci dessous montre le circuit électrique équivalent d’un compartiment
neuronal de base. Ici, V,, représente le potentiel membranaire, ou le potentiel
a l'intérieur d’'un compartiment relativement au potentiel du mileu externe a la
cellule (dépolarisation).

Le symbole “masse” (électrique) au bas de la figure représente un point de
ce milieu externe, qui est pris comme potentiel zéro de référence. Puisque les
solutions conductrices ioniques externe et internes & la cellule sont séparées par
la membrane cellulaire, le compartiment se comporte comme un condensateur.

Celui ci se charge et se décharge par les courants entrant et sortant du com-
partiment. Ces courants peuvent provenir des compartiments adjacents ou bien
du passage des ions a travers des canaux présents dans la membrane cellulaire,
ou bien encore d’injection a 1’aide d’électrodes introduites dans la cellule.

Le potentiel membranaire apparait a travers la membrane (ddp transmembra-
naire) de capacitance Cy, et peut créer un courant entrant ou sortant du compar-
timent (a gauche) a travers la résistance axiale R, quand il y a une différence de
potentiel non nulle V,,, — Vn'; entre le potentiel du compartiment considéré et celui
du compartiment qui lui est adjacent.

De la méme facon, il peut apparaitre un courant sur la droite a travers la



résistance axiale R, (qui peut étre différente de R,).

T

La conductance Gy, représente la conductance variable spécifique d’un type
d’ions qui procure aux neurones leurs propriétés particuliéres (sytémes “tout ou
rien”; & seuil). Par convention, on traite de conductance et non de résistance ici.
L’unité de conductance est le siemens (inverse d’Ohm).

Les différences de concentration ionique entre l’extérieur et l'intérieur de la
cellule entrainent ’apparition d’une pression dite osmotique qui tend & entrainer
les ions le long du gradient de concentration.

Le déplacement de charges crée une différence de potentiel qui entraine un flot
opposé a ce mouvement. Le potentiel membranaire pour lequel il résulte un cou-
rant ionique nul, pour un type d’ion, est le potentiel d’équilibre F} (ou d’inversion
ou de Nernst) de ce type représenté par une pile en série avec la conductance Gy.

En ’absence d’entrée synaptique, de courant injecté, ou de création de poten-
tiels d’action spontané, V;, va tendre rapidement vers une valeur de repos Eyepos
(Eyest en anglais), qui est généralement comprise entre —40mV et —100mV'. Cette
valeur est déterminée par la condition que le courant total ionique soit nul a tra-
vers la membrane.

L’autre résistance apparaissant sur ce schéma et la pile reliant 'intérieur et ’ex-
térieur de la cellule représente 'effet combiné de canaux passifs (principalement
de type chloride) ayant une conductance fixe. La résistance R, est la résistance
membranaire (la conductance Gjigison = i est appelée conductance de liaison).

Le potentiel d’équilibre associé a ces ions E,, est généralement proche du poten-
tiel de repos Eyepos. Finalement, la source de courant I;,; représente une éventuelle
injection de courant & 1’aide d’une électrode introduite dans le compartiment.



On peut alors calculer le potentiel V;,, en utilisant une équation différentielle
qui exprime le fait que le courant total & travers le condensateur (de capacitance
Cpn) est donné par C’mddL;”, d’otn1, a l'aide du schéma, en sommant sur les divers

espeéces ioniques présentes,

(E) Cmd:i/?;m — (Elgmvm) +Zk[<Ek_Vm)Gk]+ (Vm];zlvm) + (Vm];avm) +Ilnj

La convention de signe utilisée ici (convention des physiologistes) définit comme
courant ionique positif & travers des canaux, un courant qui entraine un flot de
charges positives vers 1'intérieur du compartiment.

La conductance G, pour ’espéce k, variable dans le temps, résulte & un instant
donné de I'ouverture et de la fermeture d’un grand nombre de canaux. C’est une
valeur moyenne d’un processus s’effectuant, a 1’échelle d’'un canal, de maniére
aléatoire.

On résout alors ’équation (£) numériquement, a 1’aide de l'ordinateur, pour
chaque compartiment, d’ot la necessité de résoudre un systéme d’équations cou-
plées. La question de la dépendance des conductances Gy, par rapport au potentiel,
au temps ou aux entrées synaptiques doit étre également abordée .

III. Connexions axonales, synapses

Un des modes de communication entre neurones est dénommé synapse chi-
mique. Dans ce cas, un potentiel d’action entraine la libération d’un neurotrans-
metteur & partir d’'un terminal présynaptique situé en périphérie d’une branche
axonale.

Celui ci diffuse & travers un étroit passage vers la jonction postsynaptique (ha-
bituellement située sur une dendrite), entrainant un accroissement de conductance
pour un ensemble donné de canaux ioniques qui sont sensibles & ce neurotrans-
metteur.

Des connexions synatiques peuvent également apparaitre entre deux dendrites
ou entre deux axones.

Habituellement, un axone est traité comme un cable pour lequel un délai existe
pour la propagation d’un potentiel d’action, bien qu’il puisse étre modélisé comme
une série de compartiments, si la propagation axonale doit étre connue en détail.

Dans la plupart des cas, les changements s’opérant dans la conductance du



canal postsynaptique est une fonction simple du temps qui peut étre exprimée en
termes de résultats expérimentaux.

En conséquence, nous n’aurons pas & modéliser en détail le processus de libé-
ration de neurotransmetteur présynaptique, sa capture par les recepteurs post-
synaptiques, et la facon avec laquelle la membrane postsynaptique est affectée
par ce mécanisme. La fonction en question est appelée fonction alpha , qui sera
introduite plus précisément plus loin.

Evidemment, a chaque synapse est associée une amplitude (certains disent un
“poids”)qui traduit en fait le nombre, variable d’une synapse a l'autre, de canaux
impliqués dans la connexion.

Ces “poids” peuvent varier suivant certaines circonstances. On considérera une
classe de récepteurs, dénomée récepteurs potentiel dépendants NMDA, pour les-
quels il a été montré des capacités particuliéres de modification dans les processus
d’apprentissage. On étudiera également les synapses électriques, qui sont un autre
type de connexion interneuronale.

Apres avoir modélisé des neurones isolés et la facon avec laquelle ils peuvent
interagir, nous pourrons aborder ’étude des réseaux de tels cellules.

II1. Contraintes numériques
®Erreurs possibles.

La validité des résultats d’une simulation numérique dépend de plusieurs fac-
teurs, depuis la qualité des données introduites pour effectuer la simulation jusqu’a
la méthode utilisée pour son éxécution.

La situation idéale est celle pour laquelle on connait une solution analytique du
probléme, en supposant que le modéle sous jacent est correct. Cette situation est
malheureusement tres rarement rencontrée et on doit avoir recours a la simulation
numérique.

Dans ce cas, la question peut souvent se poser de savoir si un résultat étrange
obtenu correspond véritablement & un phénomeéne nouveau ou bien est di sim-
plement & une erreur de calcul numérique.

Comment peut on faire confiance & un résultat numérique ? Ceci s’obtient en
fait a la suite d’une certaine expérience dans I’étude des dynamique neuronales qui
pourra établir une distinction entre les résultats “suspects” et ceux correspondant
a des situations biologiquement acceptables.



Les sources d’erreurs peuvent résulter d’une mauvaise utilisation du langage
de programmation (ici Genesis), de I'introduction d’erreurs conceptuelles dans le
modele, d’un choix inaproprié de paramétres et de valeurs constantes erronées
pour le calcul numérique, comme par exemple la taille du pas d’intégration.

®Choix du schéma d’intégration.

Un programme de simulation neuronale résout un ensemble d’équations diffé-
rentielles couplées, en remplacant des équations de type (E) par des équations
dites aux différences qui sont résolues de proche en proche, au fur et a mesure que
le temps, découpé en “tranches” s’écoule.

On dit que l'on a discrétisé le temps. En principe, quand les intervalles de
temps choisis pour cette discrétisation sont de plus en plus petits, la validité des
résultats est meilleure mais dans ce cas, le temps d’éxécution sera de plus en
plus long. Un certain nombre de téchniques ont été développées pour obtenir le
meilleur compromis entre validité et vitesse.

Elles se répartissent en deux catégories. Les méthodes dites explicites sont les
plus simples mais nécessitent I’emploi d’intervalles de temps trés petits afin d’évi-
ter des instabilités numériques, en particulier dans le cas ol le nombre de com-
partiments considéré est élevé. Les méthodes implicites sont plus complexes mais
plus stables.

Le progiciel Genesis permet d’utiliser un certain nombre de méthodes d’inté-
gration numérique, la plus simple étant celle d’Euler (“vers I'avant”). D’autres,
plus évoluées, sont de type implicite et sont trés stables. Elles seront décrites plus
loin.

La méthode d’intégration utilisée par défaut est la méthode d’Euler exponen-
tielle, qui a été optimisée pour résoudre des équations de type (E).

C’est en général le meilleur choix pour des cellules ayant un nombre relati-
vement restreint de compartiments, comme cela est le cas pour la majorité des
simulations de systémes sur réseaux.

Il existe d’autres algorithmes de type Euler comme la méthode de Crank-
Nicholson implicite. Ces derniers sont les plus rapides et sont utilisés par Genesis
de facon stable avec des intervalles de temps assez grands.

Cependant, ils nécessitent des étapes additionnelles dans la mise en place de
la simulation. Ils sont utilisés quand les cellules comprennent un grand nombre
de compartiments. L’exemple type donné dans la distribution de Genesis est le
programme Cable qui permet d’expérimenter plusieurs schémas d’intégration nu-
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mérique.

Pour ce qui concerne le choix du pas d’intégration, celui ci doit en général étre
plus petit que le plus rapide des événements rencontré dans 1’évolution du systéeme
neuronal.

Par exemple, on sait qu’un potentiel d’action atteint sa valeur maximum en
environ 1ms. Alors, des intervalles de temps de 'ordre de 0.01ms seront un choix
convenable. La valeur par défaut de ces intevalles de temps qui est communiquée
dans les exemples que nous traiterons représente un bon compromis entre validité
et vitesse.

Cependant, quand des modifications substancielles auront été apportées aux
parameétres, il sera utile de modifier également la valeur de ces intervalles (steps
en anglais). Si par exemple, en augmentant leur valeur, les résultats ne sont pas
affectés, on pourra constater une augmentation de la vitesse d’éxécution. Inverse-
ment, on peut étudier 'effet d’une diminution des steps.
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