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Abstract Frequency coding is considered as one of the most common coding strategies
employed by the neural systems. This fad leals, in experiments as well as in theoreticd
studies, to construction of so cdled transfer functions where the output firing frequency is
plotted against the input intensity. However, the term "firing frequency" can be understood
differently in different context. Basicdly, it means that the number of spikes over an interval
of preseleded length is counted and then divided by the length of the interval, but due to the
obvious limitations, the length of observation cannot be abitrary long. Then firing frequency
is defined as redprocd to the mean interspike interval. In parallel, an instantaneous firing
frequency can be defined as redprocd to the length of current interspike interval and by
taking a mean of these, the definition can be extended to introduce the mean instantaneous
firing frequency. All these definitions of firing frequency are cmpared in aim to contribute to

a better understanding of the input-output properties of a neuron.



1 Introduction

For a onstant signal or under the steady-state conditions, charaderization of the input-
output properties of neurons, as well as of the neuronal models, is commonly done via so
cdled frequency (input-output) transfer functions in which the output frequency of firing is
plotted against the strength (again often frequency) of the input signal. By constructing the
transfer functions, it is implicitly presumed, that the information in the investigated neuron is
coded by the frequency of the adion potentials which is the dasscd coding schemain reural
systems (Adrian, 1928. Charaderizaion of the input signals by the frequency of evoked
adion potentials requires to give aproper definition of the firing frequency and to extend it
for the transient signals. Up to now various definitions of the term "spiking frequency" have
been adopted (Awiszus, 1988 Ermentrout, 1998 Gerstner and van Hemmen, 1992 and the

concept of the rate ading is carefully treated by Gerstner and Kistler (2002).

In the laboratory situation, the aucia question in identification of the "firing rate"
(frequency, intengity) is gationarity of the unting process of spikes and without this
stationarity speaking about the firing rate loses its snse. The most common and intuitive
understanding of the firing frequency is based on counting events (spikes) appeaing in an
interval of prescribed duation and dviding this number by the length of this interval. An
argument against the use of this method is that the duration of observation interval can be
limited for several reasons; either the required stationarity disappeas outside the interval or
its length is out of control of an experimentalist. The conditions are often very variable during
experiments. For example, in studies on hippocampal place cés, the dwell time of a fredy
moving animal in the given part of the aena dways changes (Fenton and Muller, 1998.
Similarly, in experiments with neurons in sensory systems the observation periods have to be
reduced to the time when the stimuli ads upon the neuron (Rieke & al., 1997. In other
cases, an applied pharmaceiticd treament has a limited duation and neuron must be
rearded only within this time. As we will mention later, for a short observation period the
sensitive point is not only the limited length of the observation, but also the time origin in

which the counting of spikes garts (if identified with an adion potential or not). Gerstner and
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Kistler (2002 discusshow to average over time (repetitions of experiments) or over different

neurons to improve the estimates of the firing rate.

A related method used for determination of the firing frequency is based on
cdculation of inverse of the average interspike interval (1Sl). We will seethat this method
and the previously mentioned one (based on counting procesy are under spedfic conditions
identicd and thus in the theoreticd studies reaprocd of the mean 1Sl is usualy dedared as
the firing rate (Burkitt and Clark, 200Q Van Rullen and Thorpe, 2001 and many others). Of
course, for small samples both methods are influenced by the seledion of the beginning and
the end of the observation period (see Fig. 1), but the am of this paper is not to study the
effed of small sample size In the extremal situation with only one spike available during the
observation period, cdculation of the mean IS fails to provide awy information. With two
spikes geeking about "mean” 1Sl is possble and probably less influenced by other fadors
than the number of spikesin avaguely determined period.

So cdled "instantaneous’ firing frequency can be defined for asingle ISl as inverse of
its length (see Pauluis and Baker (2000 for historicd notes on this method). This implicitly
asumes that the arrent ISl isthe "mean" over a short period of time. Then, in an analogous
manner to the firing frequency over an interval of some fixed length, the mean of these
instantaneous firing frequencies can define "mean instantaneous firing rate". Similarly,
(Knight, 1972 Barhi et al., 1975 define instantaneous rate & redprocd to the period from
the last spike and thus both definitions coincide & the moments of spike generation. These
two methods, inverse of the mean I1SI and the mean of inverse 1SI, are equally suitable for
experimental and simulated (modeled) data. Formally, it means that if available 1SIs are
denoted {t,,...,t,}, which are independent redizaions of a random variable T", then either

1/t =1/1%"t; or (1/t) = 13" 1 are cdculated. This corresponds to situation in which it is
i=1 i=1"

assumed that |SIs are redizaion of a random variable T' and either 1/E(T) or E(1/T),
where symbol E is used for mean throughout this paper, are evaluated. One can seethe

differences in definition of firing frequency on a simple numerica example (Fig. 1).
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In this article we ae going to compare the aove introduced methods of firing rate
quantification for the common neuronal models and to point out the possble differences and
implications for inference on red data. The paper does not ded with the time-variable and

stochastic rates.

2 Basicresults
Standard definition of the rate function of discharge (firing) is (Johnson, 1996

 B(N@+ AL - N@)
o) =fim At

, (2.2)

where N is the @unting process of spikes. If this function is independent of ¢ and thus
constant, which is the presumption considered in this article, it is cdled the firing rate. As
drealy mentioned, a natural way to cdculate the firing rate of a neuron is to divide the
number of elicited spikes, N (t), by the length of observation period, ¢. The mean of ISls,
E(T), is conneded to the mean of the wunting process, E(N(t)), by the aymptotic

formula

IR -/0\(0)
ET) t—oo t

, (2.2)

(see eg., Cox and Lewis, 1966 Ruddand Brown, 1997). Formula (2.2) holds true for finite ¢
only under the mndition that N (¢) is a stationary point process Cox and Lewis (1966 show
details how E(N(t)) is related to the inverse of the mean 1SI. The necessary condition for
stationarity of the munting processis that it starts in an arbitrary time and this implies that
the sequence of 1SIs cannot be stationary. However, for a renewal processdisregarding the
time before the first spike (i.e., starting the sequence of 1SIs with the first spike) solves the
problem and non-renewal models are outside the scope of this paper. Nevertheless as
ilfustrated in Fig. 1, equation (2.2) does not hold if the mean ISl is replacal by the sample
average and the mean of the counting process by its ssmple value. The theoreticd result
given by equation (2.2) can be used if the observation period is sufficiently long. This usualy
is not the cae in estimating the firing rates as the observation period contains rather few

spikes. Gerstner and Kistler (2002 give 100500 ms as a usual length of the observation
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period and this obvioudy permits only a few spikes. To overwhelm this difficulty, the
averaging over time gpeaing in equation (2.2) is replacad by averaging over different
neurons or over repetition of experiment on the same neuron. In this case, the inference has
to be based on redizaion of the random variable 7. Hence, we focus on the estimate and the
comparison of the firing frequency, 1/E(T') and the mean instantaneous frequency, E(1/T).
In theoreticd inference, we can use the fad that the function 1/t is convex and by using
Jensen's inequdity (e.g., Rao (1965, p.120) we can prove that for any positive random

varigble T,
E(1/T) > 1/E(T), (2.3)

which permits us to conclude: The mean instantaneous frequency is always higher or at least
equd to the firing frequency. This result will be in sequel ill ustrated and quentified on several
common stochastic models of membrane depolarizaion and also on severa generic statisticd

descriptors often used for charaderization of experimental data.

3 Generic models of spiketrains

3.1 Gamna distribution d 19s

The Gamma distribution is often and succesdully fitted to experimentally observed
histograms of 1SIs and is often taken as a theoreticd model for which further conclusions are
derived (e.g., Baker and Gerstein, 2001). The probability density function of 7" is

)\v e—)\ttv—l

where I is the Gamma function and v > 0 and A > 0 are the parameters. (Below probabili ty
density will be denoted by ¢(.).) The statisticd moments are well known for this distribution

and thus we can diredly write

1/ E(T) = % | (32)

For X = 1/T, we have
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and the mean for distribution (3.3) can be cdculated which yieldsfor v > 1
A

B/T) = =~

(3.4)

Compared with equation (3.2) we can seethat the difference between two rates is deaeasing
for increasing v. This is expeded since for increasing v, the interval distribution becomes
more sharply pedked, i.e., approacdes the deterministic case, and in the deterministic case the

two measures beaome identicd.

3.2 Poison pocessandits modification

The spikes are generated in acordance with a Poisson processif v = 1 inmodel (3.1). Then
from equation (3.2) followsthat 1/E(T") = X and equation (3.4) impliesthat E(1/T) = oo.
This driking difference is caused by existence of very short ISIs and was already noted in
Johnson (1996. Let us thus assume that the model is the dead-time Poison process
(modeling arefradory period) in which intervals between events are exponentialy distributed
but cannot be shorter than a cnstant §. Then ISI distribution is Aexp(—A(t — §)) and
1/E(T) = A\/(\6 + 1). The mean instantaneous frequency is

> Xexp(—Az)

e A )

dz (3.5)

which is finite. In Fig. 2a we show the firing rate axd mean instantaneous firing rate in
dependency on the inverse of the length of the refradory period §. We can see that both
definitions tend to give the same result with increasing the refradory period. Thisis expeded

sincethe processbemmes amost deterministic when the refradory period dominates 7.

4 Simple stochastic models
4.1 Perfed integrate-and-fire (Gerstein-Mandel brot model)

This gmple modé is closer to the statisticd descriptors like those in the previous Sedion
than to the models aiming on redistic description of neurons considered below. It means that

even if the data fit the model perfedly, it can be used for their charaderizaion, but hardly
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any biophysicd conclusions can be deduced from this fad. The probabili ty density function of

T is known as the | nverse Gausdan distribution,

8 (S — pt)?
g(t) = Uwexp{ ST } 4.1

where u, 02, S are mnstants charaderizing the neuron and its input (Tuckwell, 1988. Its

statisticd moments are well known and thus we can diredly write

1/E(T) = % . (4.2)

For X = 1/T, we have
S (Sx — p)?
o) = —r—eap{ - B 3)

and the mean for distribution (4.3) can be cdculated which yields

02

BT =5+ - (4.4)

Comparing equations (4.2) and (4.4) we can see that the difference between mean
instantaneous frequency and the firing frequency increases with increasing o which

charaderizes the noise and deaeases with deaeasing S which is the firing threshold of the

model.

4.2 Leaky integrate-and-fire (Ornstein-Uhlenbeckmodel)

The Ornstein-Uhlenbedk stochastic processrestricted by a threshold, cdled le&ky integrate-
and-fire (LIF) model, is the most common compromise between tradability and redism in
neuronal modeling (Tuckwell, 1988 Gerstner and Kistler, 2002. In this model, the behavior

of the depolarizaion V' of the membrane is described by the stochastic differential equation
dv = (- g + p)dt + odW , V(0) = 0, (4.5)
where, 7 > 0 is the time constant of the neuron, W is a standard Wiener process (Gaussan

noise with unity-sized delta function), x4 and o2 are mnstants charaderizing the input and

t = 0 is time of the last spike generation. The possbility to identify the time of the previous
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spike with time zeo is due to the fad that the process of intervals generated by the first
passages of process(4.5) aaossthe threshold S isarenewal one.

The solution of the first-passage-time problem is not a smple task for model (4.5)
and numericd and smulation techniques have been widely used (Ricdardi and Sacedote,
1979 Ricdardi and Sato, 1990. The Laplacetransform of the first-passage-time probabili ty
density function is available (see Tuckwell, 1988 for historicd references) and from it its
mean can be derived. The firing rate, f= 1/E(T), can be gproximated by the following

linea function
F= L<0\/7T7'+27'M—S) , (4.6)
TS

(Lansky and Sacedote, 200]). The ranges in which this approximation is valid is restricted to
the values of parameters for which the quantities (u\/7)/0 and (u\/7 — (S/\/7))/0 ae
smal. This means that, first of all, for sufficiently large amplitudes of noise the response

functionislinea. Lineaizaion (4.6) is quite robust and valid in wide ranges of parameters.

By using the fad that the Laplacetransform §(s) of the first-passage-time probabili ty density
function is avail able, the mean of 1 /7" can be cdculated by using the primitive function of this

Laplacetransform,

BT) = [ / sg(w)de | 47)

The input-output frequency curves using the firing rate and the mean instantaneous rate ae
compared in Fig. 2b. To improve apossbility of comparison with other models, model (4.5)
was transformed into dimensionless variables. It means that the time is in units of time
constant 7 and voltage in units the firing threshold S. We can see that only for large

amplitude of noise, almost half of the threshold value, the difference becomes substantial.

4.3 Diffusion model with inhibitory reveasal potential (Feller model)

To include some other feaures of red neurons in LIF model, the reversal potentials can be

introduced into model (4.5). In one of the variants of this model, introduced by Lansky and
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Lanska (1987, the behavior of the depolarization V' of the membrane is described by the
stochastic differential equation

v = (—g +p)dt+ oV = VidW, V(0) = 0, (4.8)

where the parameters have the same interpretation as in equation (4.5) and V; < 0 is the
inhibitory reversal potential (Lansky et al., 1999. As for the LIF model, the Laplace
transform of the ISl can be written in a dosed form

1

g(s) = , (4.9)
¢(3T, (o +1)Y5 SQT;VI)

3
j

where ¢(a, b; z) is the Kummer function (Abramowitz and Stegun, 1965. Equation (4.9)
was used for numerica evaluation of the mean instantaneous frequency via equation (4.7)
and the mean 1Sl was cdculated by using the Siegert formula (Siegert, 1951). To seethe
difference between the LIF model and model (4.8) we dtempted to have the same set of
parameters used in both models. The problem arises for fixing the noise anplitude & in
model (4.8) it depends on the adual level of the membrane depolarization V. The anplitude
of noise was made equal at the resting level, which is one of the methods applied in Lansky et
a. (1995. The input-output frequency curves for firing rate and mean instantaneous rate ae
compared in Fig. 2c. Again, as for the LIF model, the dimensionlessvariant of equation (4.8)
was used. We can seethat the difference between two definitions of firing frequency is less

remarkable here than it is for the LIF moddl.

5 Biophysical model with noise.

To illustrate the atieved results on aredistic model of a neuron we investigated the Morris-
Leca mode which is a smplification of the origina Hodgkin-Huxley system. Two kinds of
chanrels, voltage gated Ca** channels and voltage gated delayed redifier K+ chanrels, are
present in this model of excitable cdl membrane, (Morris and Leca, 1981 Rinzd and
Ermentrout, 1989. When a noisy externa input is applied, the system of equations for the

normalized membrane depolarization V' (¢t) and for X (t) representing the fradion of open
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KT channels can be written in the form

% =geam(Voa = V) + 0k X(Vk = V) +a (Ve = V) + I +9(t), (5.1
and
X &) - %), 62

where the time is also normalized. The cdcium current plays the role of sodium current in the
original Hodgkin-Huxley system. However, the cdcium channels respond to voltage so
rapidly that instantaneous adivation is asuumed for them with the asciated ionic
conductance go, m(V). I¢% is an applied external normalized current and n(t) is a white
noise perturbation such that < n(s)p(t) > = 0b6(s—t), where ¢ is a onstant. The

functionsm(V'), X(V) and kx (V) are of the form

m(v) = 2 +tanh(v‘;gvl)),
X(V) = %(1 —|—tcmh(v‘;4%’)) | (53)
kx(V) = gocosh(vifj/g)) :

In these equations, kx (V (t)) is arelaxation constant for a given V' (t), further, gc., gx and
gr are onstants representing normalized conductances, V., Vx and V; are normalized
resting potentials for the two different kinds of ions and for leskage arrent, finaly
Vi.Vo,V3,V, and ¢ are mnstants. The vaues of all constants were taken from Rinzd and
Ermentrout (1989.

When constant and Gausdan white noise inputs are gplied, the random variable T is
cdculated. In the Fig. 1d, inverse of mean E(T") and mean E(1/T') are shown in dependency
on the anplitude of noise for different values of the constant input. The same dfed as for the

simple neuronal models is observed.
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7 Discusson and Conclusions

The cdculation of number of spikes per long time window is rather unredistic from point of
view of neura system. Thus, it is assumed that the time averaging is in red systems replaced
by population averaging gving the same result (counting spikes emitted by a neuron during
period of one minute is the same & counting spikes of 600 neurons emitting spikes within
100 milliseconds). This posshility of repladng time averaging by population averaging would
be espedally important for evaluation of firing rates in transient situations like in the evoked

adivity.

The terminology when spe&king about the firing rates is not always clea. Sometimes
constant firing rate is cdled mean rate, while & other occasions the function f(¢) given by
equation (2.1) and redly averaged over some interval of time is cdled mean firing rate. Also
the instantaneous rate is understood in different ways. In some caesit is the firing probabili ty
in an infinitesmally short interval (Johnson, 1996 Fourcard and Brunel, 2002. In other cases
the reaprocd of the I1SIs or their smoothed version is used; Pauluis and Baker (2000 and
Johnson (1996 compare these two approadies. The difference is well ill ustrated on the
extremal case (deterministic firing - constant 1SIs) in which ¢ in LIF given by equation (4.5)
tends to zero. From one point of view, the firing rate is a sequence of delta functions of time
with pe&ks locaed at the moments of spikes and instantaneous firing rate is either zero or
1/1Sl. From the other point of view, adopted here, the rate and instantaneous rate wincide
and are eual to redprocd of the I1SI. While the first approach may be seen as more
informative, we have to remind that we apriori presume that the rate is constant over the

whole period of observation.

Van Rullen and Thorpe (2001 compared the cunting method to caculate the firing rate
with the ISl method and dedared the latter one & potentially more acarate then the first
one. However, under the conditions valid in their paper, the authors preferred the latency to
the first spike & the neuronal code. It is adually again closely related to the ISl distribution

but not based on the counting process
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We mmpared two methods for evaluation of the firing rate in this article. Despite that one of
them gives ystematicdly larger value, the difference between them is not so enormous, at
least in the conditions investigated here. The only exception is the Poisnian firing which
anyway can be rarely considered as aredistic description of neuronal firing. For other models
only strong noise makes the methods sibstantially different. One alvantage of the mean
instantaneous firing rate is that statisticd properties of the random variable 1/7 can be
derived and thus confidence intervals found and testing procedures for comparison of the
rates under different experimental situations can be gplied. Thisis not so easy for the firing
rate cdculated as 1/E(T'). The only way to overcome this defed of the redprocd of the
mean 1Sl is to use known properties of spike cunts (Treves et a., 1999 Settann and

Treves, 2000.
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Figure legends:

Fig. 1 A schematica example of experimental data. Observation starts at time zeo and lasts
for 0.2s with three spikes or four spikes if there is gike & time origin. The firing frequency
cdculated in three different ways are f; = 1/t = 20 (25)s?, f, = #spikes/period = 15 (20)

st, fs = (1/t) = 23.81 (32.54) s', where the numbers in parentheses hold if the observation

starts with a spike.

Fig. 2 Comparison of the input-output curves in dependency on the parameters of the
models. (a) The firing rate (lower curve) and the mean instantaneous firing rate (upper curve)
in dependency on the inverse value of the length of refradory period 1 /6 for Poissonian firing
with rate A = 20s~!; the frequencies and 1 /6 are given in s=!. (b) - (d) The firing rates (full
lines) and the mean instantaneous firing rates (dashed lines) are plotted as function of the
amplitude of the noise for different levels of the input. (b) LIF neuronal model, from top to
the bottom p = 1.5, 1, 0.5 and 0.1, the firing threshold S =1, 7 = 1. (c) Feller neuronal
model, the same levels of the input x and the same parameters as for the LIF, V; = — 1, (d)
Morris-Leca neuronal model, from top to the bottom 7¢** = 0.145, 0.125, 0.105and 0.085.



