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Abstract Frequency coding is considered as one of the most common coding strategies

employed by the neural systems. This fact leads, in experiments as well as in theoretical

studies, to construction of so called transfer functions where the output firing frequency is

plotted against the input intensity. However, the term "firing frequency" can be understood

differently in different context. Basically, it means that the number of spikes over an interval

of preselected length is counted and then divided by the length of the interval, but due to the

obvious limitations, the length of observation cannot be arbitrary long. Then firing frequency

is defined as reciprocal to the mean interspike interval. In parallel, an instantaneous firing

frequency can be defined as reciprocal to the length of current interspike interval and by

taking a mean of these, the definition can be extended to introduce the mean instantaneous

firing frequency. All these definitions of firing frequency are compared in aim to contribute to

a better understanding of the input-output properties of a neuron.
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1  Introduction

For a constant signal or under the steady-state conditions, characterization of the input-

output properties of neurons, as well as of the neuronal models, is commonly done via so

called frequency (input-output) transfer functions in which the output frequency of firing is

plotted against the strength (again often frequency) of the input signal. By constructing the

transfer functions, it is implicitly presumed, that the information in the investigated neuron is

coded by the frequency of the action potentials which is the classical coding schema in neural

systems (Adrian, 1928). Characterization of the input signals by the frequency of evoked

action potentials requires to give a proper definition of the firing frequency and to extend it

for the transient signals. Up to now various definitions of the term "spiking frequency" have

been adopted (Awiszus, 1988; Ermentrout, 1998; Gerstner and van Hemmen, 1992) and the

concept of the rate coding is carefully treated by Gerstner and Kistler (2002).

In the laboratory situation, the crucial question in identification of the "firing rate"

(frequency, intensity) is stationarity of the counting process of spikes and without this

stationarity speaking about the firing rate loses its sense. The most common and intuitive

understanding of the firing frequency is based on counting events (spikes) appearing in an

interval of prescribed duration and dividing this number by the length of this interval. An

argument against the use of this method is that the duration of observation interval can be

limited for several reasons; either the required stationarity disappears outside the interval or

its length is out of control of an experimentalist. The conditions are often very variable during

experiments. For example, in studies on hippocampal place cells, the dwell time of a freely

moving animal in the given part of the arena always changes (Fenton and Muller, 1998).

Similarly, in experiments with neurons in sensory systems the observation periods have to be

reduced to the time when the stimuli acts upon the neuron (Rieke et al., 1997). In other

cases, an applied pharmaceutical treatment has a limited duration and neuron must be

recorded only within this time. As we will mention later, for a short observation period the

sensitive point is not only the limited length of the observation, but also the time origin in

which the counting of spikes starts (if identified with an action potential or not). Gerstner and
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Kistler (2002) discuss how to average over time (repetitions of experiments) or over different

neurons to improve the estimates of the firing rate.

A related method used for determination of the firing frequency is based on

calculation of inverse of the average interspike interval (ISI). We will see that this method

and the previously mentioned one (based on counting process) are under specific conditions

identical and thus in the theoretical studies reciprocal of the mean ISI is usually declared as

the firing rate (Burkitt and Clark, 2000; Van Rullen and Thorpe, 2001 and many others). Of

course, for small samples both methods are influenced by the selection of the beginning and

the end of the observation period (see Fig. 1), but the aim of this paper is not to study the

effect of small sample size. In the extremal situation with only one spike available during the

observation period, calculation of the mean ISI fails to provide any information. With two

spikes speaking about "mean" ISI is possible and probably less influenced by other factors

than the number of spikes in a vaguely determined period.

So called "instantaneous" firing frequency can be defined for a single ISI as inverse of

its length (see Pauluis and Baker (2000) for historical notes on this method). This implicitly

assumes that the current ISI is the "mean" over a short period of time. Then, in an analogous

manner to the firing frequency over an interval of some fixed length, the mean of these

instantaneous firing frequencies can define . Similarly,"mean instantaneous firing rate"

(Knight, 1972; Barbi et al., 1975) define instantaneous rate as reciprocal to the period from

the last spike and thus both definitions coincide at the moments of spike generation. These

two methods, inverse of the mean ISI and the mean of inverse ISI, are equally suitable for

experimental and simulated (modeled) data. Formally, it means that if available ISIs are

denoted , which are independent realizations of a random variable , then either
�����	�
���
����
 �� ������������ � ������������ � �� �  !#"%$ !#"&$' '!( (

 or  are calculated. This corresponds to situation in which it is)
assumed that ISIs are realization of a random variable  and either  or ,

* +�,.-0/1*32 -0/�+�,�*32
where symbol  is used for mean throughout this paper,  are evaluated. One can see the

-
differences in definition of firing frequency on a simple numerical example (Fig. 1).



5

In this article we are going to compare the above introduced methods of firing rate

quantification for the common neuronal models and to point out the possible differences and

implications for inference on real data. The paper does not deal with the time-variable and

stochastic rates.

2 Basic results

Standard definition of the rate function of discharge (firing) is (Johnson, 1996)

46517�8�9;:1<>=?A@ B C0D>EFDHGJI G�KMLNEFDHGOKPKGQ QQ , (2.1)

where  is the counting process of spikes. If this function is independent of  and thus
R S

constant, which is the presumption considered in this article, it is called the firing rate. As

already mentioned, a natural way to calculate the firing rate of a neuron is to divide the

number of elicited spikes, , by the length of observation period, . The mean of ISIs,
RFTHSOU S

V THWXU Y V T>RFTHSOU�UZY
, is connected to the mean of the counting process   by the asymptotic

formula [ V T>RFTHSOU�UV THWXU S\;]1^>_`�a b  , (2.2)

(see e.g., Cox and Lewis, 1966; Rudd and Brown, 1997). Formula (2.2) holds true for finite ̀

only under the condition that  is a stationary point process. Cox and Lewis (1966) show
cFd `Oe

details how  is related to the inverse of the mean ISI. The necessary condition for
f d>cFd `OePe

stationarity of the counting process is that it starts in an arbitrary time and this implies that

the sequence of ISIs cannot be stationary. However, for a renewal process disregarding the

time before the first spike (i.e., starting the sequence of ISIs with the first spike) solves the

problem and non-renewal models are outside the scope of this paper. Nevertheless, as

ill ustrated in Fig. 1, equation (2.2) does not hold if the mean ISI is replaced by the sample

average and the mean of the counting process by its sample value. The theoretical result

given by equation (2.2) can be used if the observation period is sufficiently long. This usually

is not the case in estimating the firing rates as the observation period contains rather few

spikes. Gerstner and Kistler (2002) give 100-500 ms as a usual length of the observation
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period and this obviously permits only a few spikes. To overwhelm this diff iculty, the

averaging over time appearing in equation (2.2) is replaced by averaging over different

neurons or over repetition of experiment on the same neuron. In this case, the inference has

to be based on realization of the random variable . Hence, we focus on the estimate and the
g

comparison of the firing frequency,  and the mean instantaneous frequency, .
h�i.j0k gXl j0k�h�i g3l

 In theoretical inference, we can use the fact that the function  is convex and by using
h�i�m

Jensen's inequality (e.g., Rao (1965), p.120) we can prove that for any positive random

variable ,
g

n o�p�q rso�p.n0t1q3uv w
, (2.3)

which permits us to conclude: The mean instantaneous frequency is always higher or at least

equal to the firing frequency. This result will be in sequel ill ustrated and quantified on several

common stochastic models of membrane depolarization and also on several generic statistical

descriptors often used for characterization of experimental data.

3  Generic models of spike trains

3.1 Gamma distribution of ISIs

The Gamma distribution is often and successfully fitted to experimentally observed

histograms of ISIs and is often taken as a theoretical model for which further conclusions are

derived (e.g., Baker and Gerstein, 2001). The probabili ty density function of  is
x

yMz1{�|�} z |~ ��1���� ��s���A������
3.1

where  is the Gamma function and  and  are the parameters. (Below probabili ty
� ������ ���

density will be denoted by .) The statistical moments are well known for this distribution�����#�
and thus we can directly write

���.�0�1�3 �¡ ¢£
 . (3.2)

For , we have
¤¦¥¨§�©�ª

«M¬®­°¯�± ² ¬�³.­°¯ ¬ ¯´­ ¬1µ�¯¶ ·¸º¹¼» ½¾
3.3
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and the mean for distribution (3.3) can be calculated which yields for ¿�ÀsÁ
Â0Ã Á�Ä�ÅXÆ�Ç ÈXÉËÊÌ  . (3.4)

Compared with equation (3.2) we can see that the difference between two rates is decreasing

for increasing  This is expected since for increasing , the interval distribution becomes
È�Í È

more sharply peaked, i.e., approaches the deterministic case, and in the deterministic case the

two measures become identical.

3.2 Poisson process and its modification

The spikes are generated in accordance with a Poisson process if  in model (3.1). Then
ÈÏÎ¨Ê

from equation (3.2) follows that  and equation (3.4) implies that .
Ð�Ñ.Ò0ÓHÔXÕ×Ö Ò0Ó�Ð�Ñ�ÔXÕ�ÖsØÙ

This striking difference is caused  by existence of very short ISIs and was already noted in

Johnson (1996). Let us thus assume that the model is the dead-time Poisson process

(modeling a refractory period) in which intervals between events are exponentially distributed

but cannot be shorter than a constant . Then ISI distribution is  and
Ú Û Û ÚÜ�Ý�ÞMß�à ß1á6à â�âã�ä.å0æHçXè×é äêæ ë�ã�èì ìîí

. The mean instantaneous frequency is

ï0ð�ñ�ò�ó3ô�õ ö%÷ø�ùûú ð�ü ÷�ôð®÷þý ôÿ � � � �� (3.5)

which is finite. In Fig. 2a we show the firing rate and mean instantaneous firing rate in

dependency on the inverse of the length of the refractory period . We can see that both
�

definitions tend to give the same result with increasing the refractory period. This is expected

since the process becomes almost deterministic when the refractory period dominates .
�

4 Simple stochastic models

4.1 Perfect integrate-and-fire (Gerstein-Mandelbrot model) 

This simple model is closer to the statistical descriptors like those in the previous Section

than to the models aiming on realistic description of neurons considered below. It means that

even if the data fit the model perfectly, it can be used for their characterization, but hardly
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any biophysical conclusions can be deduced from this fact. The probabili ty density function of�
 is known as the Inverse Gaussian distribution,���
	���
 ����� � �� ����� ������ � ��  !"# $ %& '' (4.1

where , ,  are constants characterizing the neuron and its input (Tuckwell, 1988). Its( ) ' *
statistical moments are well known and thus we can directly write+-,/.10
24365 * (  . (4.2)

For , we have
7 58+-,�2 9 0�:;365 <�:�= > 0 3* 0 * :?> 3@8: @A:) B ()C D E'' 4.3

and the mean for distribution (4.3) can be calculated which yields.10F+-,�24365 G* *( ) ' '  . (4.4)

Comparing equations (4.2) and (4.4) we can see that the difference between mean

instantaneous frequency and the firing frequency increases with increasing  which)
characterizes the noise and decreases with decreasing  which is the firing threshold of the*
model.

4.2 Leaky integrate-and-fire (Ornstein-Uhlenbeck model)

The Ornstein-Uhlenbeck stochastic process restricted by a threshold, called leaky integrate-

and-fire (LIF) model, is the most common compromise between tractabili ty and realism in

neuronal modeling (Tuckwell, 1988; Gerstner and Kistler, 2002). In this model, the behavior

of the depolarization  of the membrane is described by the stochastic differential equation
H IKJ L MFN O PFIRQSO IUT JVM�WXPYL WJ

     ,    , (4.5)Z [ \
where,  is the time constant of the neuron,  is a standard Wiener process (Gaussian] ^`_ a
noise with unity-sized delta function),  and  are constants characterizing the input andb c degfih

 is time of the last spike generation. The possibili ty to identify the time of the previous
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spike with time zero is due to the fact that the process of intervals generated by the first

passages of process (4.5) across the threshold  is a renewal one.
j

 The solution of the first-passage-time problem is not a simple task for model (4.5)

and numerical and simulation techniques have been widely used (Ricciardi and Sacerdote,

1979; Ricciardi and Sato, 1990). The Laplace transform of the first-passage-time probabili ty

density function is available (see Tuckwell, 1988 for historical references) and from it its

mean can be derived. The firing rate, = , can be approximated by the following
k l-m/n1oqpsr

linear function t8u vxw y{z| z}�~ � }�~ ~X�� ��
 , (4.6)

(Lansky and Sacerdote, 2001). The ranges in which this approximation is valid is restricted to

the values of parameters for which the quantities  and  are
� ��� � �`����� ������ � � � � � �� � �

small. This means that, first of all, for sufficiently large amplitudes of noise the response

function is linear. Linearization (4.6) is quite robust and valid in wide ranges of parameters.

By using the fact that the Laplace transform  of the first-passage-time probabili ty density˜�������
function is available, the mean of  can be calculated by using the primitive function of this

�-���
Laplace transform, �1���-���s 6¡ ¢ £¤�
¥4 §¦�¥ ¨© ª« ¬ ­¯®X°

˜ (4.7)

The input-output frequency curves using the firing rate and the mean instantaneous rate are

compared in Fig. 2b. To improve a possibili ty of comparison with other models, model (4.5)

was transformed into dimensionless variables. It means that the time is in units of time

constant  and voltage in units the firing threshold . We can see that only for large± ²
amplitude of noise, almost half of the threshold value, the difference becomes substantial.

4.3 Diffusion model with inhibitory reversal potential (Feller model)

To include some other features of real neurons in LIF model, the reversal potentials can be

introduced into model (4.5). In one of the variants of this model, introduced by Lansky and
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Lanska (1987), the behavior of the depolarization  of the membrane is described by the
³

stochastic differential equation´�³ µ ¶�· ¸ ¹§´�º�¸ ³»·¼³x´U½ ³V¶�¾X¹6µ ¾³
     ,   , (4.8)¿ À Á Â Ã

where the parameters have the same interpretation as in equation (4.5) and  is the
Ä Å`ÆÇ

inhibitory reversal potential (Lansky et al., 1995). As for the LIF model, the Laplace

transform of the ISI can be written in a closed formÈ�É�Ê-Ë6Ì ÍÎÐÏ�ÑÓÒ`Ô-Õ Ö× Ø ÙÚ ÛÜ ÜÝßÞ àáÝßÞâ âã ãä å�ä , (4.9)

where  is the Kummer function (Abramowitz and Stegun, 1965). Equation (4.9)
æ ç�è�éUê-ë�ì;í

was used for numerical evaluation of the mean instantaneous frequency via equation (4.7)

and the mean ISI was calculated by using the Siegert formula (Siegert, 1951). To see the

difference between the LIF model and model (4.8) we attempted to have the same set of

parameters used in both models. The problem arises for fixing the noise amplitude as in

model (4.8) it depends on the actual level of the membrane depolarization . The amplitude
î

of noise was made equal at the resting level, which is one of the methods applied in Lansky et

al. (1995). The input-output frequency curves for firing rate and mean instantaneous rate are

compared in Fig. 2c. Again, as for the LIF model, the dimensionless variant of equation (4.8)

was used. We can see that the difference between two definitions of firing frequency is less

remarkable here than it is for the LIF model.

5 Biophysical model with noise.

To ill ustrate the achieved results on a realistic model of a neuron we investigated the Morris-

Lecar model which is a simplification of the original Hodgkin-Huxley system. Two kinds of

channels, voltage gated  channels and voltage gated delayed rectifier  channels, are
ïñð òóôó ó

present in this model of excitable cell membrane, (Morris and Lecar, 1981; Rinzel and

Ermentrout, 1989). When a noisy external input is applied, the system of equations for the

normalized membrane depolarization  and for  representing the fraction of open
õVö
÷ùø úûöq÷�ø
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 channels can be written in the formþKÿþ�� ��� ���	� 
��
����� ���	� 
����������	� 
��
����� � ���������� ��� � � � � � ��!  (5.1)"

and #�$
%�& ')(+*-,�./*�0�*	,�.21304.5  , (5.2)

where the time is also normalized. The calcium current plays the role of sodium current in the

original Hodgkin-Huxley system. However, the calcium channels respond to voltage so

rapidly that instantaneous activation is assumed for them with the associated ionic

conductance  .  is an applied external normalized current and  is a white6 798	:�;=< 8�>�;?A@ BDC�E F
noise perturbation such that , where  is a constant. TheG H IKJLHNM�JPO Q H ISR3M�JT T U�V U
functions ,  and  are of the formW�X	Y
Z\[3X-Y�Z ]+X	Y�Z^

_9`	a�bdc `fehg�ikjmlonp` bkbe arq�as t uv , 

w�x	y
z|{ x~}����k�m�o�px z�z} yr��y� y ��  , (5.3)

�+�	���d� �������p� ����r���� �� ���  .

In these equations,  is a relaxation constant for a given , further,    and
�+�-���N �¡k¡ ���� ¢¡ £ ¤�£¥ ¦�§ ¨

£ � � �© ¦�§ ¨ © are constants representing normalized conductances, ,  and  are normalized

resting potentials for the two different kinds of ions and for leakage current, finally� � � �ª+«­¬ ®, , ,  and  are constants. The values of all constants were taken from Rinzel and¯
Ermentrout (1989).

When constant and Gaussian white noise inputs are applied, the random variable  is
°

calculated. In the Fig. 1d, inverse of mean  and mean  are shown in dependency
±\²N³µ´ ±\²f¶K·�³µ´

on the amplitude of noise for different values of the constant input. The same effect as for the

simple neuronal models is observed.
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7  Discussion and Conclusions

The calculation of number of spikes per long time window is rather unrealistic from point of

view of neural system. Thus, it is assumed that the time averaging is in real systems replaced

by population averaging giving the same result (counting spikes emitted by a neuron during

period of one minute is the same as counting spikes of 600 neurons emitting spikes within

100 milli seconds). This possibili ty of replacing time averaging by population averaging would

be especially important for evaluation of firing rates in transient situations like in the evoked

activity.

The terminology when speaking about the firing rates is not always clear. Sometimes

constant firing rate is called mean rate, while at other occasions the function  given by
¸o¹Nº�»

equation (2.1) and really averaged over some interval of time is called mean firing rate. Also

the instantaneous rate is understood in different ways. In some cases it is the firing probabili ty

in an infinitesimally short interval (Johnson, 1996; Fourcard and Brunel, 2002). In other cases

the reciprocal of the ISIs or their smoothed version is used; Pauluis and Baker (2000) and

Johnson (1996) compare these two approaches. The difference is well ill ustrated on the

extremal case (deterministic firing - constant ISIs) in which  in LIF given by equation (4.5)¼
tends to zero. From one point of view, the firing rate is a sequence of delta functions of time

with peaks located at the moments of spikes and instantaneous firing rate is either zero or

1/ISI. From the other point of view, adopted here, the rate and instantaneous rate coincide

and are equal to reciprocal of the ISI. While the first approach may be seen as more

informative, we have to remind that we a priori presume that the rate is constant over the

whole period of observation.

Van Rullen and Thorpe (2001) compared the counting method to calculate the firing rate

with the ISI method and declared the latter one as potentially more accurate then the first

one. However, under the conditions valid in their paper, the authors preferred the latency to

the first spike as the neuronal code. It is actually again closely related to the ISI distribution

but not based on the counting process.
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We compared two methods for evaluation of the firing rate in this article. Despite that one of

them gives systematically larger value, the difference between them is not so enormous, at

least in the conditions investigated here. The only exception is the Poissonian firing which

anyway can be rarely considered as a realistic description of neuronal firing. For other models

only strong noise makes the methods substantially different. One advantage of the mean

instantaneous firing rate is that statistical properties of the random variable  can be
½K¾�¿

derived and thus confidence intervals found and testing procedures for comparison of the

rates under different experimental situations can be applied. This is not so easy for the firing

rate calculated as . The only way to overcome this defect of the reciprocal of the
½K¾ÁÀ\Â�¿ÄÃ

mean ISI is to use known properties of spike counts (Treves et al., 1999; Settanni and

Treves, 2000).
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Figure legends:

Fig. 1 A schematical example of experimental data. Observation starts at time zero and lasts

for 0.2s with three spikes or four spikes if there is spike at time origin. The firing frequency

calculated in three different ways are 1/ s , #spikes/period 
ÅÇÆ ÈÉÆËÊ�ÌÎÍDÊ�ÏmÐ ÅÑÆ ÆrÒ�ÏSÍ Ê�ÌmÐÓ ÔÓ

-

s , s , where the numbers in parentheses hold if the observation- -
Ó ÓÕÖÑ×�ØfÙKÚ�Û�Üd×ÞÝ�ß�àâá�ÙPØ ß�Ý�àäãKå�Ü

starts with a spike.

Fig. 2 Comparison of the input-output curves in dependency on the parameters of the

models. (a) The firing rate (lower curve) and the mean instantaneous firing rate (upper curve)

in dependency on the inverse value of the length of refractory period  for Poissonian firing
ÙKÚ æ

with rate ; the frequencies and  are given in . (b) - (d) The firing rates (full
ç èéËê�ë�ì íKî ìï�ð ï�ð

lines) and the mean instantaneous firing rates (dashed lines) are plotted as function of the

amplitude of the noise for different levels of the input. (b) LIF neuronal model, from top to

the bottom 1.5, 1, 0.5 and 0. , the firing threshold , 1  (c) Feller neuronalñ òó ô õ�órô ó ö
model, the same levels of the input  and the same parameters as for the LIF, , (d)÷ ø ó ùúôû
Morris-Lecar neuronal model, from top to the bottom  0.145, 0.125, 0.105 and 0.085.
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