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A simple stochastic model of spatially complex neurons
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Abstract

A method for studying the coding properties of a multicompartmental integrate-and-fire neuron of arbitrary
seometry is presented. Depolarization at each compartment evolves like a leaky integrator with an after-firing reset
imposed only at the trigger zone. The frequency of firing at the steady-state regime is related to the properties ot the
multidimensional input. The decreasing variability of subthreshold depolarization from the dendritic tree to the
trigger zone is shown for an input that is corrupted by a white noise. The role of a Poissonian noise 1s also
investigated. The proposed method gives an estimate of the mean interspike interval that can be used to study the
input-output transfer function of the system. Both types of the stochastic inputs result in broadening the transter
function with respect to the deterministic case. © 2000 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

The frequency of uniformly sized action poten-
tials is one of the basic modes of signaling in the
nervous system. As the stimulus intensity in-
creases, an increase in the neuronal activity fol-
lows. The concept of rate coding, including other
statistical measures such as, for example, 1ts vari-
ability, is based on the assumption that permits
the replacing of time averaging by assembly aver-
aging. This type of coding ensures high reliability
against any distortion. We have been interested,
in this paper, in the derivation of the property of
rate coding of neurons in dependency on their
compartmental structure.

* Corresponding author.
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In that way, an obvious tendency 1n computa-
tional neuroscience i1s to build more and more
complex neuronal models composed of a very
hich number of compartments, each of them in-
cluding kinetics of wvarious 1onic channels
(DeSchutter, 1989; Segev et al., 1989; Ddegev,
1992). These models aim on the closest resem-
blance to the reality as possible. On the other
hand, the models appearing recently in physical
(biophysical) journals and aiming to study the
properties of the information transfer within the
neurons are constructed n simpler way to gain an
insight into the role of different parameters of the
models and to permit, at least, some analytical
calculations, and thus not to rely completely on
the numerical techniques. Of course, these models
do not describe reality in detail; however, their
advantage is a possibility to study the mput—out-
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put characteristics of a model neuron (for an

introduction, see Tuckwell, 1988).

Even the simple models differ in the level of
complexity in which they describe the membrane
voltage dynamics: starting with the perfect inte-
grator (for example, Bulsara et al., 1994), using
the most common concept of the leaky integrator
(for example, Bulsara et al., 1996.} Plesser and
Tanaka, 1998: Shimokawa et al., 1999) and also
including more complex modelb like Fitzhugh-
Nagumo neurons (for example, Tuckwell and Ro-
driguez, 1998). However, all these models are of
single-point type, which means that they behave
as a single compartment without taking into ac-
count any spatial characteristics of real neurons.

Beside the single-point models, there were also
attempts to study the imnput— output characteristics
by introducing the spatial structure of neurons. at
least in the simplest way (Rospars and Lansky,
1993: Bressloff, 1995: Lansky and Rospars, 1995).
This lead to the investigation of a model neuron
divided into two parts and based on the following
assumptions:

[. The neuron 1s assumed to be made of two
interconnected, dendritic and ftrigger zone,
compartments.

2. The input is present at the dendritic compart-
ment only.

3. The potentials of the two compartments are
described by leaky integrators with a reset
mechanism at the trigger zone.

This two-point schema had been investigated
under different modifications, and in a determinis-
tic as well as stochastic manner. In our recent
studies (Lansky and Rodriguez, 1999a.b), 1t has
been shown that the activity described by the
two-compartment model is less sensitive to abrupt
changes in stimulation, which 1s caused by a
smoothing effect of the spatial arrangement. The
delayed response of the two-point model 1s a
natural consequence of the fact that the mput
takes place at a compartment different from that
at which the output 1s generated. Furthermore,
the model predicts serial correlation of interspike
intervals, which is a phenomenon often observed
in experimental data but not reproducible 1n sin-
gle-point models under steady-state input. Finally.,
the model neuron shows a lower sensitivity to the
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input intensity and a larger coding range than the
single-point model. Now. we wish to show at least
some of these properties, on a more complex
model ncuron.

The general case of a multicompartmental neu-
ronal model with a branching structure i1s consid-
ered in the present contribution. The input, 1n
contrast to the previous models, may take place at
any compartment. The differential equations for
the mean depolarization (the deterministic model)
in all compartments for subthreshold stimulation
are given. The firing frequency is calculated under
the deterministic scenario and estimated tor the
stochastic variants. The implications for the rate
coding properties of the model are derived. The
analytical results are verified and illustrated by
simulations.

2. Multicompartmental integrate-and-fire neuronal
model with branching structure

2.1. The model

First, we formally describe the multicompart-
mental neuronal model based on the concept of
leaky integration. Using the compartmental ap-
proach, a continuously distributed cellular body
and dendritic tree i1s decomposed into small sub-
units for which the electrical properties, the ca-
pacitance and resistance, are considered fixed (for
example, Perkel and Mulloney, 1978; Perkel et al.,
1981; Edwards and Mulloney, 1984). Further-
more, there exists only one unique compartment
(a trigger zone) in which generation of an action
potential can take place. As soon as the variable
characterizing this compartment (its membrane
potential) crosses a firing threshold, S, tor the first
time, the action potential i1s generated and the
variable is instantaneously reset to the resting
level, here taken as zero. The other compartments
aim at description of a dendrite and, due to the
lack of their reset after the firing, they are gov-
erned by linear equations. Even if the dendritic
system has a rather complex structure, the whole
system will have its nonlinear behavior concen-
trated at one variable, the trigger zone depolariza-
tion, only. The equations for the membrane
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Using the sxample presented in Fig. 1. we can column vector of membmne potentldlb in all the
identify the structure of the model: compartments 1s denoted by X and a system of

differential equations for its components can be
written as follows.
(1) For a compartment that 1s neither a trigger
zone nor the terminal one,

e the depolarization at the trigger zone 1s de-
noted bv ..

e the pobentmlb of the nearest (connccted to the
trigger zone compartment) arc denoted

tX; 1. i, =1. ... P! where P is the number of d
these compartments; in Fig. 1, Pl =3:; i erh-«-f}fr % f;Xfl i

e analogously. for the second level of the com-
partments connected to Xf , the notation X, ;_ — ik *"r--f;{(Xfl---f;f_] N Xflmf,a--)
s used. ih=1, ..., P; . In Flé 1, P7=2, PH_ P oy _

"7 . P5=2 and the number of higher brdmhes 1S N ,le iy i iy (X A i)
determined similarly (P, =3, P{, =2 P3, =1, ' .
+1 . (1)

and so on). %

e for a model with maximum number of branch-
ing levels B, the potentials at this level are (i1) The potential at the trigger zone 1s governed
denoted by X; ; :In Fig. 1, B=)3. by the equation
The parameters (r, C') are indexed in the same d pl

way as the compartments and. analogously, the | er,zlL 1 X,.= ) 2 (X, — X))+ 1, (2)

junctional resistance between compartments —/=1

5 i ., 1s denoted by
Ri i . - Ihey can take different values for where « (respectively ;) 18 the reciprocal value
| of the trigger zone time constant (respectively
junctional time constant between the trigger
zone and connected compartments).
12312 -
(111) For the K terminal compartments

[y ... 1, and 11,

X 12301
X 12302

X123
X 19311 d

X1232X | dz ivioody, U 20, iyia i,

] =% o X = X )+

fh—] I]”.Ih

bzbh voes Dy (3)

This system of equations will be used for deter-
mining the properties of the model.

2.2. Coding properties of the model

A1 For long-lasting constant stimulation, a regular
firing is achieved under the condition .5 < X,.(<C),
where X,_(2c) 1s the asymptotic value of the trig-

Fig. 1. Schematic reprcsentation of a neuron. ger zone potential 1n the absence of the firing
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threshold. If ¢, and ¢,.; are the times of the jth
and  (j+ | th splkes in the activity of the
model neuron. the aim is to derive a relationship
between the length of the interspike interval
(¢, — {;) and the mput I. To solve this problem.
the system Eqgs. (1)—(3) has to be investigated. Let
= (X, X )7, where X, is a N, dimensional
vegtm of dendritic membrane potentials.} S1m1-
larly, let 7= (/.. 1.,)7 be the decomposition of the
external inputs. Then, system Egs. (1)—(3) takes
the form dX/ds = MX + i with the following 11N1-
tial conditions X,.(z,) =0, X4(;) = (/. For all
values of r€[r;, ¢,.,] . the Solutlon of Egs. (1)-(3)
is given by X(z‘) — MU X (2,) + Sr M —=91ds. In
order to find the time of the next splke under the
stationary firing, namely to find 7, such that
X,.(t,,)) =S, the additional condition XdUH
1) = d(z‘) has to be imposed on this solution.
Let O/z)=2¢"""% and consider the case in
which an inverse matrix to M exists. Thus, we can
write  X(1) = [Q/(t) — 1|M ~ T+ Q/(¢)X(1,). Tak-
ing the decomposition of Q/(r) and M 1n accor-
dance with the trigger zone and dendrite, we have

Vi, M,
M = - - and
1'”3 M4

o (@1 K1)
QU)<QW)QMJ

where M, (resp. Q4(r)) is a scalar, M, (resp.
04(1)) is a Ny x Ny matrix, M, (resp. Q4(7)) 1s a
line vector and M, (resp. Qi4(r)) 15 a column
vector, both with N, components. A simple calcu-
lation gives the following two relations:

(04t WM, + Q41 )M, — MyIX (1)
— — QUt, ) — Q4 VIE + T+ MsS
(Ot )Mo+ Q41,, )M, — M1X (1)
= — Ot - — Q4 I+ 1.+ M,S

Solving this system with respect to )f’d(z}) , WE
obtain the following N, dimensional vector
equation:

Q1 )M+ Ot )My — M,
[Q%(f}+ 1)}\/[2 -|— Qi(rf—k 1)M4 L jwél-] 1

(— Q414 1) ), — Qi ;+1)1 ‘|‘M°;S) (4)

= — Q{(t,, )I-— 051, +1)[dT+1 + M5

which gives a closed relationship between mter-
spike interval (¢, , —¢;) and the external mput.
We used a direct implementation of Eq. (4) as
well as a numerical integration of system Egs.
(1)—(3). Both methods were compared and, in the
examples presented later, they gave very similar
results. Deriving the frequency of the spiking ac-
tivity in the regular (stationary) regime from inter-
spike intervals, for various external inputs, the
rate coding properties of our model neuron can be
deduced from this transfer function.

2.3. Examples

2.3.1. Example (a)

Previously, the relations between spiking fre-
quency and different inputs were derived for a
simple neuronal model composed of only two
compdrtments with a single input at the dendrite,

= (0, 1,)" , (Bressloff and Taylor, 1994; Lansky
and Rodriguez, 1999a.b). This result can be di-
rectly obtained from Eq. (4). To simplify, let us
assume that both compartments have the same
time constants. In such a case,

om0 %
\ Iy o (:{ T ixr)

where x and x are the inverse junctional and
transmembrane time constants. We denote

Q/(1) = CEA Ef’f)[(fM — /o)Ay — 40)]

+ ef{f{(f B If}[(j‘/] - /Ef'i)f"f(/ﬂbz — /11)]:, Whel"e /;:..]
and /, are the (negative) eigenvalues ot M; «, =
— o, A= —u— 2. Then,

Qi(t; 1) = Q41 ) = (M 77— e® 1712
) i )
Q4,4 ) = O1( ;Tl)*—(eﬂl A S A 1

and Eq. (4) gives
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[ o [dQ'ii(:f'— 1) = 7+ zr)S]

r

This can be written 1 the form
Sa(a+ 2201 — Ot )]
+ o A0 ) — O ) + 1]
[O4(t; )+ O4(t; ) — 1] = 0.

This relationship can be obtained from the results
presented by Bressloff and Taylor (1994). and 1s
identical with formula (35) of Lansky and Ro-
driguez (1999a).

2.3.2. Example (b)

As a second example, let us take a model with
four compartments: a trigger zone 1n series with a
dendritic compartment that is connected to a
couple of two parallel compartments X =

(X.., X,, Xy, X;»). The system Eqs. (1)—(3) takes

the form

de:

dI — —('E+E'I)XI:+%1X'1+]:

dX,

E_: — (o oy gy oy g )X oy A
+ oy 2 X h o X+

dX,, |

Ep = —(.Ti‘l‘ff-‘lm)Xn‘|‘311ﬁ11){1+111

dX,, | |

47 = — (% + 2, 12)X >+ % 124, + 15

assuming « identical for all compartments. Fig. 2
shows the frequencies of spike emission as ob-
tained from Eq. (4) (points) and from numerical
simulation of Egs. (1)-(3) (lines) (using a Euler
method with step dz = 0.01 ms), for inputs applied
only on the most distal compartments (dendrite |
and dendrite 2 ), namely I..=1,=0, [,;, [},€] — 5,
20] mV/s. The threshold value S=2 mV and the
time constants have been chosen of the order of

10 ms. The values of parameters are «=0.1

ITIS_dl :‘Z-LH ZL'XLIEZ lJff16 mS_l,,

.

'“%I — 0.93’51ﬁ]1
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Fig. 2. Transfer function for inputs on two distal compart-
ments

ms ~ ', indicating a small variation of junctional

i}

time constants along compartments.

2.3.3. Example (c)

[et us consider a model with N compartments
in series, X=(X_, X;. Xi5, X;10 oo X1 1)
with an input applied to the most distal compart-
ment whose depolarization 1s X, .

Fig. 3 shows how the transfer functions change
in dependency on the number of compartments
(the threshold § is kept fixed). The curves were
obtained as solutions of Eq. (4) and verified by
numerical integration. It follows from Fig. 3 that
increasing, in this model, the number of compart-
ments is accompanied by an increase of minimum
signal intensity necessary to evoke a response.

3. The stochastic system

3.1. White noise perturbations and the filtering
process

l.et us now consider the model neuron under
the action of constant deterministic mputs that
are corrupted by white noise perturbations. For
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subthreshold behavior. the deterministic system
Eqgs. (1)—(3) turns out to be a N, + 1 dimensional
Ornstein—Uhlenbeck  process given by the
stochastic differential equation

X, =(MX,+1,)dt+¢dW,

Xy = X(O)

(5)
where 7, is constant input and W, is a standard
Wiener  process  with  amphlitudes 7=
(Tizs Ofs s Oy ) specific for different com-
partments. The mean behavior of the system of
Eqg. (5) 18 the same as the behavior of the deter-
ministic system Eqgs. (1)—(3). We will derive the
second-order moments of X, in order to investi-
cate the coding characteristics of the model neu-
ron. Denoting K(I) the covariance matrix of the
process X .. K(1) = E{[X,— E(X)|[X,— EX )"} .
1t satisfies the dlfferentml equation dK(r)/dr =
MK({)—I—K(Z)M" + 66" with initial value K, =
E{[X,— E(X)[X,—EX,)]"} ., (Arnold, 1974).
The solution of th1s equation 1s

0.5 T T Bl

045 I

04 F

< 035 F

03

0.25 F

frequency (1/ms)

015

01 |
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¢

]((T) — eé’vﬁj{{_)efbﬁ 4 e,U(r —

U

x)(,.o“: Te Ml —

) ds (6)

As an example of application of this formula, we
consider the last model of Section 2.3.3 (N com-

partments in series). For the elements of K(7)
K, (1)=[Q(1)K,Q(1)];

"
Qin(t = 8)Q (1 —
JU
where Q(t) =X, e Tl [(M — 2)/(4; — 4;)] and
, N are the (11egat1ve) eigenvalues of
the (symmetric) N x N matrix M. Integration n
Eq. (7) can be performed, and the limiting value
of K (t)ast— o ,which is the asymptotic value

of the variance of the depolarization of the mith
compartment, i1s obtained as:

s) ds (7)

+ -

Ao 1=1, ...

Fi

le( m( f‘“’))
(L Vus.).

— — gz( |
ﬂ:zl 2/ l Z

(7 )i+ J)

L i‘\-’ﬁri i‘rﬂ 7

()

0.05

40 50 60 70 80

stimulation {mV/ms)

Fig. 3. T
jand j+ 1 are such that z,

= (1/1.01)z, with 2, =0.2 ms™

ransfer function for a model with N compartments m serics. The reciprocals of time constants z; between compartments

. the firing threshold S and constant z arc th{_, same as 1 Fig 2.
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L ! A | —t |
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Fig. 4. Trajectories of depolarizations in the stochastic model. The parameters are ¢, = 5.0 mV Jms, x=01ms™' % =1/16

ms— " [, = 10 mV ms~ .

where L%, are elements of L"=11._,[(M — /)
(4 — 4;)]. The asymptotic covariances can be ob-
tained in the same way. It follows from Fig. 4, in
which the behavior of the depolarization m this
model is illustrated (N=3, X =(X._. X, X,)"
and ¢ = (0, 0, ¢,,)"), that a decrease of stochastic
fluctuations occurs from the dendritic part to the
trigger zone. This decrease of variability along
three compartments can be analyzed by using Eq.
(8). Of course, this effect occurs also for the
two-compartment model for which the formulas
are simpler and thus presented here. In that case,

— (2 4+ 2, o
%y — (o4 2,)

with eigenvalues /, = — 2, 4, = — xz — 2x,, where
v and =z, correspond to the reciprocals of time
constants for transmembrane current and tor cur-
rent between the trigger zone and the other (den-
dritic) compartment. We have

Var(X,.(=)) =

and

Var( X (o)) — g 1 | 1 | 2

) = =\, 2 Tt )

The decreasing variability from the dendrite to the
trigger zone follows clearly from these formulas;
these results were obtained by another method by
Lansky and Rodriguez (1999a).

The filtering of white noise [rom distal to prox-
imal compartment is a rather natural mechanism
due to the passive transfer of current between
neighboring compartments. These analytical re-
sults concern two-compartment systems. How-
ever, Eq. (8) may be a useful tool to analyze this
filtering for models with N compartments 1n
series. The most general case, with arbitrary
branching structure, can be handled directly using
Eq. (6).
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3.2. Poissonian inputs and mean transfer functions

The continuous trajectories of the membrane
depolarization are the main characteristic of the
already described multicompartmental model. The
reason is that the model does not consider the
soma of the neuron as its specific part, where the
contributions to the membrane depolarization are
not so frequent (not so many synaptic endings are
located there as on the dendrite) but of substan-
tial size. While the input at the dendrite causes
small changes of the membrane potential, and
thus the system is well characterized by the white
noise, it would be natural to expect that the
incoming signal located at the soma and near the
soma has discontinuous effect on the depolariza-
tion. This leads to the investigation of a model
neuron where the stochastic part also includes
Poissonian inputs. Let us consider the following
system:

dX = (MX, + 1) dr +d¢ (9)

[

where [, is constant input, =, L,l.} Civis
Cirinigr - , Ciiia -H}T is a multidimensional
stochastic process with components of the form
(=0, W,+aNj + DN, . Hcere, o, is the ampli-
tude of the wh1te noise part with W, as Brownian
motion acting on the jth compartment and N
(resp. N; ) are (independent) Poisson processes
with intensities A7 (resp. 4; ) that drive synapses
on this compartment for which excitatory and
inhibitory postsynaptic potentials have their am-
plitudes «; (resp. b;). For this net ronal model, one
can derwe a relation between estimate of the
mean interspike interval and the constant mput
[,. This can be done by using Eq. (4) with [
identified as I=1I,+ K., where K. =a/i + b,
The transfer functions deduced in this way were
compared with those obtained by simulation of
system of Eq. (9). Here, only a simple example 18
presented, in which the neuron 1s composed of
three compartments 1n series. X=(X._, X, X|)7,
with constant plus white noise input acting on Xy,
and Poissonian impulses impinging on X;. Using
the same notation for the parameters as betore,
the stochastic system of Eq. (9) 13

/ BioSystems 58 (2000) 49-58

dX, =[—(x+ %y 1) X T Ay 1Ay T I,,] dt

dX, =[—(x+ o+ o)X+ X+ 0 X,.] di
+qa, ANT + by dANT

dX,.=[—(z+ x)X,. + 2 X\] dr

The input—output functions for this system are
plotted in Fig. 5, where a comparison with the
single-compartment model (with the same time
constant x ') is also shown (curve on the left).
The dashed curve on the right corresponds to the
deterministic case (a,, = a; = by =0). The dashed
curve in the middle corresponds to the mean
frequencies of the stochastic system as obtained
from Eq. (4). Finally, the crosses were obtained
from simulated mean interspike intervals.

A numerical procedure of Euler type was used
in order to solve this set of stochastic equations.
For the Brownian part, in the first equation, at
each time step of length Az, a random variable
z =0, 1\@14 was generated where u is a Gaussian
variable of zero mean and variance equal to one.
In the second equation, a set of exponentially
distributed random time intervals between jump
instants, with parameters A7 (resp. 47 ), was gen-
erated. The process N7 () (resp. N7 (7)) was built
with jumps of amplitude unity at the jump in-
stants. At each time step of length Az, at time 7,
the new value of X, for the Poissonian part, was
achieved by adding [N (£)(t+ Ar) — Ny ()(1)]
and b, [NT(t)(t + At) — N7 (1)(2)] to the preceding
value.

4. Conclusions

The well-known one-point integrate-and-fire
neuronal model has been extensively studied 1n
the biophysical literature because of availability of
analytical solutions related to it, in the determinis-
tic and stochastic cases. By studying its multidi-
mensional extension, we show that this property
for describing spiking neural activity 1S conve-
niently preserved. The behavior of the multi-
compartmental model, being biologically more
realistic, because of the introduction of
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Fig. 5. Transfer functions for stochastic models with Poissonian and white noise stimulations. The parameters are «, =5 mV,

hy=—2mV,/F=01ms ' /iy =01/12ms™ ", g, =2 mV/,/ms, S=5mV, z=01 ms" Lay=u, =1/16 ms™ .

possibly complex dendritic structure, can still be
analyzed using classical vectorial deterministic and
stochastic calculus.

It was generally considered that the coding range
of the one-point integrate-and-fire model was too
narrow and the threshold input intensity for spike
emission was too low as compared with those
experimentally observed. The introduction of spa-
tial structure in the model removes, at least partly,
these drawbacks. When noise is considered 1n the
input and acts on the dendritic part, a filtering
occurs naturally from dendrites to the zone of spike
oeneration. This makes the neuron more robust
against fluctuating perturbations. Thus, the multi-
compartmental integrate-and-fire models, as com-
pared with more complex and more realistic
conductanced-based models that can be generally
investigated only numerically, may be viewed as

convenient prototypes for the analytical study of

spiking neurons.
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