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Abstract

A neural network with mutual excitatory connections and external stimulation is investigated. The units of the network are
Morris–Lecar neurons. The synaptic transmission is described at the vesicular level. Random number of activated vesicles
at synaptic contacts and random quanta of released transmitter are considered. These fluctuations are applied in a form of
inhomogeneous Poisson processes, at the time scale of the spike duration. The parameters of these processes depend on the
presynaptic spiking activity and on the strength of afferent connections. It is shown how synchronization of the activity in the
network appears. A statistical analysis of spiking times is performed, showing smooth mean behavior of response frequencies.
A diffusion approximation of the network Poissonian process is derived from which an analytical formula for firing probability
is calculated.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Neuronal processes, at both the single level and the level of network, are rather naturally endowed with a stochastic
character. Fluctuations of membrane potential depend on the unpredictable occurrences of presynaptic activity
and the random release of quanta of neurotransmitter in synaptic transmission mechanism[1–5]. An additional
aspect, which has to be considered for realistic modeling of a neuron, is the highly nonlinear dynamics of its
membrane potential. Usually, the leaky integrate-and-fire model is favored for its simplicity in its single[6,7], or
multi-compartment formulation[8–10]. It is almost always used as a test case for the theoretical studies, however,
its lack of biological realism is simultaneously criticized. On the other hand, the increasing availability of efficient
computational facilities enables assessment of the fully realistic concept of Hodgkin and Huxley models (HH)[11],
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which include the active ionic channels of numerous types. Nevertheless, many simplified models inspired by the
HH system have been devoted to analysis of the spiking behavior in both the deterministic[12–14]and the stochastic
case[15]. The FitzHugh–Nagumo system with a polynomial interaction[16,17], is one example of compromise
between realism and tractability. Here, another similar method, inspired by the work of Lecar and Nossal[18], is
employed.

Time spans of the models of synaptic transmission are usually restricted to the time intervals during which
presynaptic events act on the postsynaptic membrane and thus, the time scales are of the order of interspike
intervals. Here, we propose a formalization of the synaptic transmission, at a time scale of the order of spike
duration, which is based on the theory of compound Poisson processes. In this approach, the number of activated
vesicles at a given chemical synapse is modeled as a random number whose statistical properties depend on the
presynaptic spiking activity and on the strength of interneuronal connection. Further, it is assumed that random
quanta of neurotransmitter are released by each vesicle.

Three different levels of neuronal activity—synaptic transmission, membrane dynamics and network dynamics—
are simultaneously investigated in this paper. It enables us to predict firing events for spiking neurons of the HH type
in a network. In this way we extend some previous work[19] (see also[20]) to neuronal models of the HH type.

2. The model of membrane excitability

Before considering the structure of synaptic interactions among cells, we introduce the dynamical properties of
each neuronal unit. Let us recall that for HH neurons, various ionic currents through channels may be considered with
the introduction of numerous activation and inactivation variables. Technical difficulties related to nonlinearities
associated with the high number of variables have implied the development of low-dimensional approximations[12].

The reduction approach of Morris and Lecar[13,14] is used here. Two kinds of channels, voltage gated Ca++

channels, and voltage gated delayed rectifier K+ channels, are present in their model. The calcium current plays
the role of Na+ current in the original HH system. Thus, the membrane potential equation, under the action of an
external inputIext(t), has the following form:

C
dV

dt
= f(V,X) + Iext(t), (2.1)

dX

dt
= kX(V)(X̄(V) − X), (2.2)

where

f(V,X) = gCam̄(V)(VCa − V) + gKX(VK − V) + gL(VL − V). (2.3)

The functionsm̄(V), X̄(V) andkX(V) are of the form

m̄(V) = 1

2

(
1 + tanh

(
V − V1

V2

))
, (2.4)

X̄(V) = 1

2

(
1 + tanh

(
V − V3

V4

))
, (2.5)

kX(V) = ϕ cosh

(
V − V3

2V4

)
. (2.6)

In these equations,X has the meaning of the fraction of open K+ channels,̄m(V) acts as an instantaneous activation
of Ca++ channels,kX(V) is a relaxation constant for each given value of membrane potentialV , C is the membrane
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Fig. 1. The spatiotemporal structure of external stimulations acting on the neurons in the network. For each neuron, a sequence of randomly
distributed stimulation instants is generated such that intervals between these instants are independent and exponentially distributed random
variables. The distributions have the same parameter for all cells. The stimulations have the form of a squared pulse which is not apparent from
the figure. Mean interval between pulses: 200 ms, width and amplitude of pulses: 1 ms, 3 nA.

capacitance,gCa, gK andgL are constants with conductance dimension,VCa, VK andVL are the resting potentials
for the two different kinds of ions and for the leakage current,V1, V2, V3, V4 andϕ are constants.

The system described byEqs. (2.1)–(2.6)was found to be a sufficiently exact model for biologically plausible
spiking activity of neurons. In particular, it is able to reproduce quite correctly the all-or-none signal emission,
the emergence of oscillations associated with Hopf bifurcations leading to spike trains, bistability when a stable
steady-state and a stable oscillation coexist and the burst generation with slowly varying injected current. In what
follows, for a collection ofN such model neurons, each neuron is submitted to stimulation of the form of train of
squared pulses (representing incoming action potentials), such that the time intervals between pulses are independent
and exponentially distributed random variables with a constant parameter. This represents an external input to the
network (seeFig. 1) with the intrinsic properties described below.

3. Synaptic inputs as inhomogeneous compound Poisson processes

In this section, we introduce a model of synaptic transmission between cells of a network ofN neurons described
in Section 2. We consider chemical excitatory synapses{j → i}, between neuronsi andj, which act mainly as
current sources modulated by neurotransmitters on postsynaptic receptors. The selfinteractions{i → i} are excluded.

For a{j → i} synapse, the number of activated vesicles on postsynaptic neuroni is taken as an inhomogeneous
Poisson processNj(t), with time dependent parameterλj(t), while the synaptic currentIsyn

i (t) is given by the
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(formal) derivative

I
syn
i (t) = dξi(t)

dt
(3.1)

of the following stochastic process:

ξi(t) =
∑

{j→i}
Jij

Nj(t)∑
k=1

αk, i = 1,2, . . . , N, (3.2)

whereJij is the synaptic efficacy of the{j → i} synapse that will be specified later. The{αk}, k = 1,2, . . . , are
independent identically distributed random variables, with some probability densityf(α), identical for all neurons.
Taking into account the excitatory character of the synaptic junction, the support off(α) is R+ and its mean̄α
is positive. The variables{αk} mimic the (random) quanta of neurotransmitter which are released by the activated
vesicles. The processes{Nj(t)}, j = 1, . . . , N, are supposed to be mutually independent and independent of the
variables{αk}. It is assumed that the parameterλj(t) of the Poisson processNj(t) depends on the mean presynaptic
activity of the{j → i} synapse. It is taken asλj(t) = ηΘ(Vj(t) − β), whereVj(t) is the mean of the presynaptic
membrane potential andβ is a threshold value for spiking behavior. HereΘ is a step function, such thatΘ(u(t)) = 1
if 0 < u(t) < u1 and du/dt ≥ 0,u1 being some constant, andΘ(u(t)) = 0 if these conditions are not satisfied. Thus,
Θ is similar to Heaviside function, with an additional condition onu(t). In this way, if the presynaptic neuronj is
not spiking at a timet, the parametersλj(t) are equal to zero and no vesicles are activated (with no synaptic current).
Otherwise, if the presynaptic neuronj is spiking at timet, the processNj(t) contributes to the generation of current
on postsynaptic neuroni. The parametersλj(t) then take the valueη in a time interval whose length∆ is smaller
than the duration of the action potential of presynaptic neuron, and are zero outside. Thus, the synaptic current
I

syn
i (t) on postsynaptic neuroni is essentially composed of impulses occurring over intervals of time whose length

is smaller than the time support of the presynaptic action potentials. InFig. 2, the typical excitatory postsynaptic
potentials are shown in a subthreshold or suprathreshold regime.

4. The network dynamics

The model of membrane depolarization of an individual neuron under external input, and a stochastic model
of synaptic interactions between neurons connected in a network, were proposed in the preceding sections. The
complete dynamical system describing the behavior of this network is the extended version ofEqs. (2.1) and (2.2),
given by the following system of stochastic differential equations:

C dVi(t) = (f(Vi,Xi) + Iext
i (t))dt + dξi(t), (4.1)

dXi(t) = kX(Vi)(X̄(Vi) − Xi)dt, i = 1,2, . . . , N (4.2)

whereξi is given byEq. (3.2).
The network is formally based on the assumption that each neuron is connected to the remainingN − 1 units,

however, the effect of the connection strongly depends on the values of synaptic weightsJij that were chosen to
obey a Gaussian function:

Jij = Jmax

N
exp(−γ(i − j)2), i, j = 1, . . . , N, (4.3)

where the parameterγ controls the range of interactions between cells andJmax an amplitude factor measuring the
efficiency of the synaptic contact, with respect to the size of the network.
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Fig. 2. The superimposed plots of the membrane depolarization in a network of 100 Morris–Lecar neuron models during synaptic current
exchange. Random numbers of activated vesicles are driven by inhomogeneous Poisson processes. Subthreshold and suprathreshold behavior
can be distinguished. An action potential is generated in the output of the neuron in four cases only. Neuronal parameters:gCa = 1�−1 m−2,
VCa = 1 mV, VK = −0.7 mV, gK = 2�−1 m−2, gL = 0.5�−1 m−2, VL = −0.5 mV, V1 = −0.01 mV, V2 = 0.15 mV, V3 = 0.1 mV,
V4 = 0.145 mV,ϕ = 0.2 ms−1. Synaptic current parameters:ᾱ = 0.04 nA ms,α2 − (ᾱ)2 = 0.001 nA2 ms2, β = −0.1 mV,η = 0.4 ms. Network
parameters:N = 100,Jmax = 250,γ = 0.1. The same parameters are used inFigs. 3–7.

The external inputsIext
i (t), i = 1, . . . , N, appearing inEq. (4.1), are produced by the generation of sequences

of Poissonian squared pulses. Each neuron is submitted to a train of pulses which are different realizations of the
same Poisson process. When a neuron receives such a pulse, it always fires because the amplitude of the pulse was
chosen to be sufficiently high. In addition, a neuron may also fire due to the excitatory connections with all other
neurons in the network.

In this section, numerical results analyzing this Poissonian neural network system will be presented. The syn-
chronization of firing in the network is documented. A diffusion approximation of the stochastic system is built in
the next section. The diffusion approximation method permits to obtain analytical results which are not available
for the original system.

4.1. The numerical scheme

When thejth neuron fires, a sequence of instants{tj
k
}, k = 1,2, . . . , is generated, such that the time intervals are

randomly distributed according to an exponential distribution with parameterλj(t) (seeSection 3for the definition of

this parameter). The sumξi(t) = ∑
{j→i} Jij

∑
k αkθ(t− t

j

k), i = 1,2, . . . , N, is constructed with{αk}, k = 1,2, . . . ,
a random Gaussian sequence of numbers (as models of quanta of neurotransmitter), with parameters preventing to
take negative values, andθ(·) being the Heaviside function. SeeFig. 3 for a representation of the currentξi(t) in a
form of a train of pulses occurring during the time duration of a presynaptic spike.



R. Rodriguez et al. / Physica D 181 (2003) 132–145 137

Fig. 3. An example of the postsynaptic current generated by incoming stimulation. A new vesicle is activated at each time the step function
changes its value in accordance with a Poisson process. Four vesicles are activated here. Resulting synaptic currents are shown as pulses. The
mechanism takes place over the time period of duration of a presynaptic spike.

The simulation time is divided into subintervals which are denoted{∆m}, m = 1,2, . . . , according to the
spatiotemporal structure of external stimulation and which are called time windows (seeFig. 4for illustration). The
first instant of external stimulationτ1 is selected. It is the left-hand border (l.h.b.) of the first window∆1. Then, the
l.h.b. τ2 of the second window∆2 is chosen as the nearest instant of external stimulation over all neurons which

Fig. 4. The time windows for the mean response frequency analysis of the Morris–Lecar network. Windows∆1,∆3,∆5,∆7 and l.h.b.τ1, . . . , τ7

of windows∆1, . . . , ∆7 are shown whenδ = 10 ms.
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Fig. 5. The membrane depolarization of each neuron in the network (lines) with the instants of external stimulations (crosses). The external
stimulation is identical with that inFig. 1. Some of the external signals evoke a spatial wave of action potentials, whereas others only a single
spike.

occurs at a timeτ2 > τ1+δ, whereδ is kept fixed for all windows (δ = 10 ms). The procedure continues recursively.
The division of time permits to study the evolution of spiking activity in the network when the fixed stimulation but
variable synaptic transfer is employed.

The integration of the systems(4.1) and (4.2)was performed for sufficiently many trials, with fixed (arbitrary)
choice of the external stimulations. At each time thejth neuron is spiking in a window∆m, with l.h.b. τm, the
instant of firing, withτm taken as origin, is stored asTm

j . Tm
j is time to the generation of the first spike produced

by neuronj in the window∆m. It is a random variable and is called response time. In parallel with the rate coding
concept[6], we calculate the inverse of the response times and call them response frequencies. A mean of response
frequencies was evaluated for all neurons and for each window, under the condition of one realization of external
stimulation but random variation of the synaptic mechanism.

4.2. Synchronization and mean response frequency

How the neuronal activity can be synchronized within the network ifJmax is sufficiently high is illustrated in
Fig. 5 (the number of cells isN = 100 andJmax = 250). The time variation of the membrane depolarization of
each cell in the network is presented with the spatiotemporal structure of external stimulations. It can be seen that
external stimuli acting on some neurons induce no effect on the neighboring cells. This is due to the random nature
of the synaptic contacts, for which insufficiently many vesicles are released. On the other hand, some externally
induced spikes spread and create waves of action potentials across the network.
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Another way to analyze the synchronization process is to present raster plots in such a way that only the spike
instants of each firing neuron are indicated. The random nature of synaptic contacts is illustrated inFig. 6a and b,
where the parameters are the same as inFig. 5, with different realization of the sequences{tkj }, j = 1, . . . , N. Due
to this variability, which may be an obstacle for a sufficiently accurate control of the dynamical behavior of the
network, it is necessary to go along a multi-sample analysis. In order to achieve this goal, it will be convenient, in
what follows, to characterize the firing processes of neurons in the network in the time windows{∆m},m = 1,2, . . . .

The mean response frequencies reported on the l.h.b. of each window are shown inFig. 7 together with the
spatiotemporal structure of the external inputs. It can be observed that the maximal values of the means are obtained
on the l.h.b. of each window, where an external stimulation occurs. At this time, a wave may spread away from the
neuron which is under this external stimulation.

5. A white noise approach

5.1. The diffusion approximation

In the previous section, a dynamical system for the network of conductance-based neural models was analyzed
with numerical integration techniques. In this section, we propose an approach suitable for analytical analysis. We
replace the initial dynamical systems(4.1) and (4.2), for which the synaptic interaction terms were built in terms of
inhomogeneous Poisson processes by a new system based on interactions of the diffusive type, including white noise
processes. Actually, due to the small contribution of quantas in small numbers of activated vesicles in the synaptic
contacts, one can replace the processesξi(t) in (4.1) by their diffusion approximations[21,22]. These processes,
which are described in terms of Brownian motionW(t), are built in such a way that the first and the second differential
moments of the original and the approximated process coincide. In our case, the diffusion approximationYi(t) of
ξi(t) has a differential given by

dYi(t) = ᾱ
∑

{j→i}
Jijλj(t)dt +


α2

∑
{j→i}

J2
ij λj(t)


1/2

dWi(t), i = 1,2, . . . , N, (5.1)

whereα2 is the second moment of the probability densityf(·) of the (random) quanta of neurotransmitters,α2 =∫
R+ α2f(α)dα.
Thus,Eq. (4.1)for the stochastic system of membrane potentials and activation–inactivation variables of all

neurons in the network, under the action of synaptic inputs and external inputsIext
i (t) is replaced by the equation:

C dVi(t) = (f(Vi,Xi) + µi(t) + Iext
i (t))dt + σi(t)dWi(t), i = 1,2, . . . , N, (5.2)

where the drift termµi(t) is given by

µi(t) = ᾱ
∑

{j→i}
Jijλj(t), (5.3)

and the diffusion coefficientσi(t) is such that

σi(t) =

α2

∑
{j→i}

J2
ij λj(t)


1/2

. (5.4)

Eq. (4.2), of course, remains the same.
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Fig. 6. The raster patterns corresponding to the depolarizations shown inFig. 5. The firing instants of each neuron are shown as small straight
lines. This presentation clearly shows two types of events, either single spikes or their waves. (a) and (b) correspond to different realizations of
synaptic currents and same realization of the external input. The figures illustrate how different network outputs can be generated.
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Fig. 7. Comparison of mean response frequency obtained directly from the Poissonian model and from its diffusion approximation. Nine time
windows are shown. In each window, for each cell, the mean response frequency is evaluated by taking as time origin the l.h.b. of the window.
Mean values are estimated from a sufficiently high number of trials and are plotted as vertical bars for each neuron at this border time. Continuous
lines show mean response frequency for the diffusion approximation of the inhomogeneous Poisson vesicular processes. The spatiotemporal
structure of external stimulations appears here as vertical lines (broken lines).

5.2. The mean response frequency for the diffusion model

The diffusion model of the network given byEqs. (4.2) and (5.2)was integrated in the various windows{∆m},
m = 1,2, . . . , which were described inSection 4.1. When one considers a given window∆m, it can be observed
that the neurons are divided in two groups.

The first subset, denotedΣ1, is composed of cells which are firing in this window even if they are isolated. These
neurons continue to fire when connected in the network, due to the excitatory character of the interactions. The
second subset, denotedΣ2, is composed of cells which are silent during the period∆m when they are isolated. Then,
these neurons may become active in this window when the network is interconnected. Their behavior depends on
the values of efficaciesJij , on the characteristics of synaptic transmission and on the network sizeN. For parameters
used in our simulations, the ratio between number of neurons inΣ2 andΣ1 is approximately 5–10%. Let a cell,
belonging toΣ2, be indexed byl. In Eq. (5.3), the driftµl(t) contains the following two terms:

µl,1(t) = ᾱ

j∈Σ1∑
{j→l}

Jljλj(t), µl,2(t) = ᾱ

j∈Σ2∑
{j→l}

Jljλj(t). (5.5)

The drift valueµl,1(t) can be evaluated with better accuracy thanµl,2(t) because neurons inΣ1 were already active
prior the interconnection in the network. Actually, one has

µl,1(t) = ᾱ

j∈Σ1∑
{j→l}

JljΘ(Vj(t) − β). (5.6)
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The terms in the sum(5.6)are impulse functions, which may overlap, with time support that can be identified exactly
for all presynaptic cellsj ∈ Σ1. The time variations ofµl,1(t), being considered in the rather short time interval∆m

are small. Thus, this term is further approximated by a constant termµl,1 defined as the temporal mean ofµl,1(t)

on the interval∆m. Concerning the drift termµl,2(t), we note that it has been evaluated in terms of presynaptic
activity of cellsj in Σ2 that, if isolated, are not spiking, but that may fire when they are connected. We approximate
µl,2(t) by

µl,2 = ᾱ

2

j∈Σ2∑
{j→l}

Jlj . (5.7)

Finally, one has

µl(t) � µl = (µl,1 + µl,2), t ∈ ∆m, l ∈ Σ2. (5.8)

In the same way as we determined the drift term, we assign the valuesσl,1 to the temporal mean ofσl,1(t) =(
α2

∑j∈Σ1
{j→l} J

2
lj λj(t)

)1/2
on the interval∆m. Let σl,2 =

(
(α2/2)

∑j∈Σ2
{j→l} J

2
lj

)1/2
, so that the diffusion coefficient

σi(t) in Eq. (5.2), for t ∈ ∆m, acquires the following approximated value:

σl(t) � σl = (σl,1 + σl,2), t ∈ ∆m, l ∈ Σ2. (5.9)

Therefore, for a neuron fromΣ2, when connected into the network, stochasticequation (5.2)is replaced, for a given
t ∈ ∆m, by the equation

C dVl(t) = (f(Vl, Xl) + µl + Iext
i (t))dt + σl dWl(t), l ∈ Σ2. (5.10)

The mean response frequency analysis was performed for the diffusion approximation along the same lines as for the
initial system, built in terms of Poisson processes (Sections 4.1 and 4.2). If T̃j

m is the response time for the system
(5.10)(and(4.2)), for thejth neuron in themth window, the means of{(T̃j

m
)−1} for all neuronsj = 1, . . . , N in

the network, and all windowsm = 1,2, . . . , were evaluated for sufficiently many trials. InFig. 7, the graphs of
these means are shown wherej varies from 1 to 100, in each window∆m, m = 1, . . . ,9. The obtained curves show
a reasonable agreement with the mean response frequency obtained from the simulation with Poisson processes.

5.3. The tangent mapping of the deterministic part

In order to get more information about the nonlinear stochastic process(5.10)(and(4.2)) in the time window∆m,
we look for its dynamics in the vicinity of well identified singular points, in the absence of noise (σi(t) = 0), and
of external stimulation (Iext

i (t) = 0). There are at most three such singular points, for all possible realistic values
of the parametersV1, V2, V3, V4, ϕ, VCa, VK, gCa, gK, gL andC. Thus, for eachl ∈ Σ2, let us denote(VS

l , X
S
l ) the

components of a singular pointS, which satisfy the equations:

f(VS
l , X

S
l ) + µl = 0, (5.11)

XS
l = Xl(V

S
l ), l ∈ Σ2. (5.12)

This point is a resting state of the system. The structure of the isoclines for such a system is ofN shaped and
parabolic type[14] in the two-dimensional phase space(Vl, Xl) for eachl. Let us now expand the deterministic part
aroundS. The tangent mappingAl around such a pointS has the following components of a 2× 2 matrix:

Al,11 = −gCa

(
dm̄

dVl

(VS
l , X

S
l )(V

S
l − VCa) − m̄(VS

l , X
S
l )

)
− gKX

S
l − gL , (5.13)
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Al,12 = −gK(V
S
l − VK), (5.14)

Al,21 = −dkX
dVl

(VS
l , X

S
l )(X̄(VS

l ) − XS
l ) + kX(V

S
l )

dX̄

dVl

(VS
l , X

S
l ), (5.15)

Al,22 = −kX(V
S
l ). (5.16)

Thus, denotingvl = (Vl − VS
l , Xl − XS

l ), (−ηlj )j=1,2 the eigenvalues ofAl andUl the transformation which
diagonalizesAl (which can be characterized), in the basis of eigenvectors ofAl, one obtains the following system
of stochastic equations describing the dynamics aroundS:

dχl(t) = Llχl(t)dt + Kl dzl(t), l ∈ Σ2, t ∈ ∆m, (5.17)

whereχl = Ulvl, Ll the diagonal matrix,(Ll)j,k=1,2 = −ηlj δj,k, δj,k the Kronecker symbol,Kl the vector with
componentsUl,11 andUl,12, andzl(t) = σlWl(t). UsingEq. (5.17), firing probability at timet can be calculated.

5.4. Separatrix condition and estimate of firing probability

Let us assume that parameters of individual cells are such thatηl1 andηl2 are positive (condition (a)). This
condition is naturally fulfilled by choosing parameters of the Morris–Lecar system such that the neuron model
can fire. ThusEq. (5.17)describes two independent Ornstein–Uhlenbeck processes with driftsηl1 andηl2 and
diffusion coefficientsDl,1m = (Ul,1m)2(σl)

2,m = 1,2, l ∈ Σ2. The transition probability density function for these
processes, fort ∈ ∆m andτ the l.h.b. of∆m, is given by

ρ(χl1, χl2, t|ωl1, ωl2, τ) =
∏

m=1,2

{√
ηlm

πµlm(t − τ)
exp

{−ηlm(χlm − ωlm exp(−ηlm(t − τ))2

µlm(t − τ)

}}
, l ∈ Σ2,

(5.18)

with µlm(t) = Dl,1m(1− exp(−2ηlmt)) andωl1, ωl2 are values of the stochastic process at timeτ which depend on
the external stimulations acting as brief current pulses.

Now, the behavior of the neuron with indexl ∈ Σ2, under stochastic synaptic inputs crucially depends on the
nature of its resting stateS, as it was derived inEqs. (5.11) and (5.12). Two generic cases can occur: the first
corresponds toS as a unique stable resting state. The second is associated to the existence of three singular points
with one as a saddle point. When there exists a saddle point’s stable manifold, namely when the threshold is strict and
corresponds to a separatrix, the cell has two distinct behaviors: spike emission or silence according to the position of
initial conditions with respect to the separatrix. We assume (condition (b)) that the parameters of individual cells are
such that this is the case and we follow the method which was used in[18] (for different neural models and different
inputs) to estimate the firing probabilities. Thus, the question whether a neuron fires or remains silent is related to
the crossing of the separatrix. Ifηl1 denotes the eigenvalue of the tangent mapping for the unstable manifold around
the saddle pointS, the process crosses the separatrix if the first componentχl1 of χl is positive. Thus, in our case
(conditions (a) and (b)), the probability of firing at timet is given by

Pt(firing) = Prob(χl1(t) > 0|χl1(τ) = ωl1)

= 1

2

{
1 + erf

(√
ηl1

Dl11(1 − exp(−2ηl1(t − τ)))
ωl1 exp(−ηl1(t − τ))

)}
, l ∈ Σ2, (5.19)

where erf is the error function. Here, the termsηl1 andDl,11 depend on the state of all neurons of the network and
on the values of synaptic efficaciesJij through the drift termsµl and the diffusion coefficientsσl as they appear in
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Fig. 8. The raster patterns for neurons in a two-dimensional bounded domain. Neurons are uniformly distributed in [0,1] ∗ [0,1]. The spa-
tiotemporal structure of their spiking activity is shown (points). External stimulations are of the same type as for the one-dimensional network
(segments). Values of the parameters are the same as used inFig. 2, χ = 20 cm−2.

Eqs. (5.8) and (5.9). These diffusion parameters themselves depend on the statistical characteristicsᾱ andα2 of the
vesicular variables occurring at the synaptic contacts.

6. Conclusions

We have investigated an integrated model of a neural network which includes three levels of description of
biophysical reality that are usually studied separately. In this situation, of course, many features of real systems
were not taken into account. Among most important of these is the absence of inhibitory connections in the network.
The other simplification we used is that the neurons interact with each other without time delay. It means that every
neuron obtains synaptic current almost immediately, delayed only by the onset of the synaptic transmission, after
the input neuron fires. If this assumption is removed, the observed spatiotemporal patterns of firing would have
more variable forms. Another simplification employed is that the network is practically linear. This is caused by
one-dimensional Gaussian distribution describing the synaptic weights. If a two-dimensional distribution is used,
then a three-dimensional representation of the spiking activity in the network shows a cluster organization of cells (see
Fig. 8, where the network is composed of cells which are randomly distributed in the bounded domain [0,1]∗ [0,1]
of R2 with a uniform distribution and the connection matrix is such thatJij = (Jmax/N)exp(−χ‖−→Ui − −→

Uj‖2),
i, j = 1, . . . , N, where−→

Ui ∈ R2, i = 1,2, . . . , N are the locations of the cells,‖−→Ui − −→
Uj‖ is the distance between

cellsi andj, andχ is a parameter).
The studied model shows that in response to external stimulation a synchronized firing of the network arises.

Despite the fact that this synchronization is random, mean response frequencies exhibit smooth behavior which is
obtained from the numerical simulation of the discrete stochastic process as well as its diffusion approximation.
Finally, the evolution of the deterministic part of the model is given in the vicinity of the singular points and an
analytical formula for the probability of a firing at a given time is calculated.
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