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Dynamical stochastic models of single neurons and neural networks often take the form of a system of n=2
coupled stochastic differential equations. We consider such systems under the assumption that third and higher
order central moments are relatively small. In the general case, a system of $n(n+3) (generally) nonlinear
coupled ordinary differential equations helds for the approximate means, variances, and covariances. For the
general linear system the solutions of these equations give exact results—this is illustrated in a simple case.
Generally, the moment equations can be solved numerically. Results are given for a spiking Fitzhugh-Nagumo
medel neuron driven by a current with additive white noise. Differential equations are obtained for the means,
variances, and covariances of the dynamical variables in a network of n connected spiking neurons in the

presence of noise. [S1063-651X(96)03511-8]

PACS number(s): 87.10.+e, 05.40.+j, 02.50.~¢

L. INTRODUCTION

There has been much recent interest in stochastic models
of neural activity either at the single neuron or network level
[1-5]. In realistic such models of biological neurons the
principal state variables are governed by systems of nonlin-
ear differential equations such as those of Hodgkin and Hux-
ley [6] or reduced systems such as those of Fitzhugh,
Nagumo, Arimoto, and Yoshizama [7,8]. We will refer to the
latter systems as the Fitzhugh-Nagumo systems.

In this article our main aim is to present and illustrate a
method for analyzing the behavior of nonlinear stochastic
neural models for both spiking neurons and networks of neu-
rons. The types of model for which the analysis is most
suitable are those in which a cell or a network of connected
neurons is represented by dynamical equations of the form of
a multidimensional system of coupled nonlinear stochastic
differential equations. One example of such a model [3] con-
sists of a collection of n noisy Fitzhugh-Nagumo model neu-
rons. A general form for such dynamical models for stochas-
tic neuronal networks or single neurons leads to the
following system of 2a coupled nonlinear stochastic differ-
ential equations:

dxj={¢(xj,yj)+1j(:)+k§=}1 10X [di+B;dw,, (1)

dY j=h(X;,Y)dr. 2)

Here the X;, j=1,2,...,n are voltage variables, the ¥ ¥

J=12,...,n are recovery variables, J j;, are synaptic weights
for the connection from neuron & to neuron j, and ©() is a

*Present address: Institut des Neurosciences, Université Paris V1,
9 quai St-Bernard, F-75005 Paris, France. After November, 1996:
INSERM UPR 444, Université Paris VI, CHU Saint Antoine, 27
rue Chaligny F-75571 Paris Cedex 12, France. Electronic addresses:
rodrig@cptsu2.univ-mrs.fr; tuckwell@cptsu2.univ-mrs.fr.

1063-651X/96/54(5)/1(6)/$10.00 34

threshold function, often taken as sigmoidal in shape [9], /;,
Jj=1.2,...,n are applied currents for neuren j, and B;(f),
j=1,2,...,n are noise parameters. On the other hand, models
for the large-scale activity of neural networks may also be
governed by coupled nonlinear equations such as those of
Wilsorr and Cowan [10].

In order to study the properties of such multidimensional
diffusion processes, one may consider solving the Kolmog-
orov or Fokker-Planck equation for the transition probability
density function. However, it is a partial differential equation
with, in the case of an n-compenent system, n+1 indepen-
dent variables which presents, in the case of large n, a large
computational task even on modern large computing sys-
tems. It is useful to have analytical or semianalytical tech-
niques to apply to these problems in addition to that of nu-
merically solving the Fokker-Planck equation. In practical
computations with multidimensional diffusion processes, the
most frequent methods employed are Monte Carlo simula-
tion [11] or moment calculation [12]. In addition, in some
cases a stationary probability distribution can be found [13].
either analytically or numerically.

Because there are many different forms for the stochastic
differential equations which arise in modeling of single neu-
rons and networks of connected neurons, we will obtain, in a
general case, differential equations for moments up to those
of order 2 (though this can easily be extended) for each com-
ponent in a multidimensional nonlinear system of diffusion
processes. The form of the system studied includes many of
the above mentioned neurobiological models, both for single
neurons [14] and for networks, including that described by
Eq. (1)1,3,4].

1. GENERAL RESULTS

Although the primary motivation for this article comes
from the need for neurodynamical theories, bpcause nonlin-
ear systems of stochastic differential equations have fre:--
quently been employed as mathemarical models in the.phySb
cal, chemical. and biclogical sciences [13,15], we will first
consider a general system of coupled diffusion processes.

1 © 1996 The American Physical Society
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We shall then consider, in Sec. III, the specialization of the
techniques to a biologically realistic model of a spiking
single neuron, with an example of the numerical results ob-
tained, and a general neural network model in Sec. IV.

Let X={X(r),r;0}={(Xi(:),X2(r),...,X,,(r)),:;-o}, with
n=1 being an n-dimensional random process with compo-
nents satisfying the stochastic differental equations

dxj(:>=f,-(X<r),r)dr+;1 2(X(1).0dW(1), ()

where j=1,2,...,n and m=1. The Wo={W(1),t=0},
k=12,...,m are standard Wiener processes (that is, they
each have zero mean, initial value zero with probability one,
and variance equal to ¢ at tinle ) which we assume are in-
dependent: The latter assumption can be relaxed without dif-
ficulty but it usually is taken to hold. It is also assumed that
existence and uniqueness conditions [16] for the solution of
Eg. (3) are fulfilled.
Define the n means for the various components

X (=E[X{1)].

where j=1,...,n, and the n? quantities

K;‘j(f)=E{[Xr(f)_’fz(f)][xj(f)_fj(f)]}-

where i,j=1,...,n. Of these n? quantities there are n vari-
ances,

V()=E{[X;(N-X,(NT},

where j=1,...,n, and fn(n—1) distinct covariances, K;;(t)
with i<j. These tn(n+3) first and second order central
moments, under certain assumptions about the probability
distribution of X(1), satisfy a system of $n(n+3) nonlinear
ordinary differential equations. This system of deterministic
equations, associated with the stochastic system described by
Eq. (3), is found by first finding differential equations for
these moments which hold exactly. For the means we have
immediately, on using general integration according to the
Itd definition [17], the integro-differential equation

dX (1)

— =B &0 @
The application of Itd’s formula [16] to the quantities K (1),
including the cases i=j, in conjunction with (3) yields the
following integro-differential equations for the covariances
and variances:

dK.';(n -

0 B (x,(1) ~ K0 1,000+ (X = X ()]

xf‘(x(’)”)+;, gik(X(f}J)gjk(X(f)»f)}- (5)

Note that Eqgs. (4) and (5) hold exactly.

From these equations, approximate differential equations
can be found for the first and second order moments under
the assumption that the distribution function of X(t) is con-
centrated near the mean point X(z) =X (),X5(8) 1ee 0, X (1))
[that is, Pr{{X(f) —X(r)|<ée}, for some (usually small) posi-
tive ¢, is close to 1] and is symmetric about this point [18]. It
then follows that third and higher order odd central moments
are close to zero and that fourth and higher order even mo-
ments are small relative to the second moment. Expectations
can thus be calculated approximately by retaining up to sec-
ond order terms in a Taylor expansion of the distribution
function about the mean. Thus if G(x|,xz,...,X,) is a real-
valued function of n variables, then one has the following
approximation formula:

1 n n JZG
E[G(X(1).)]~G(mn+5 2 2 [ } Bige
(m,2)

where m=m(?) is the approximation to X(f) and
C,,=C (1) is the approximation to K,(#). The notation

|
ax,c?xp (mr)

means evaluation of the (deterministic) indicated derivative
of the indicated (real) function G(x,X3,...,%,,t) at the de-
terministic point (m,(£),ma(t),...,m,(1),1)-

Applying (6) to Egs. (4) for the means gives immediately
the required n differential equations for these quantities:

dm; 1 - < Pf:
‘-r-nt—’=f,~(m.r)+52 > {—jj—]( )Czp- (D

d =1 p=1 ﬁx;axp

To obtain approximate differential equations for the vari-
ances and covariances we first consider the first part of (3).
On applying (6) we find that this is given by

E{[X:(s) —mi(t)‘lfj{x(“)’r)}

1 n n 52 ' ’
=7 IZI p§="1 [5x¢c5‘xp [(xi_'mf)fj]] Cip- (8)

(m.z)

Since

x:—m;)f; = 5[. ——'L+§l pil ] s
[ 3It5xp [( i a)f;] () 1 dxp J axl

where &8}, is Krenecker's delta (equal to 1 for j=k and C
otherwise), we find after some algebra, and utilizing the fact
that the term E{[Xj(r)—mj(r)]f‘-(X(r),:)} is just (8) with I
and j reversed,
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dt axy i=1

dCy(n) < [ il - | o
;‘ [ ](m..t)c”.i-z [5).‘1]

T4+ i % i é i a_zg"_k_.;..
k=1 gikg;k 2 [=1 p=1 g",k 8x;&xp axz é‘xp

98k 98 jk i 9gix 98k
5xp ﬁx;

78
ik &x;axp - )Cgp. (10)

Thus (10}, in general, gives the sought after differential equations for the second order central moments, including the
required covariances. In the event that i =j Eq. (10) yields the following differential equation for the variances S;(1)=~V (1):

2 2
ds(1) if; * (o = = | [ dg 38
J j i 2 i j
——=2{ = : = : 2 + +g. S
dt d'xj S‘r+% axl C‘J +k§1 g}k(m’r) !_El axt gjk 5x% t
(m,1) (m,£) (m.2)
n n I’ 2 2
8 jk 98 jk 9°g jx
+2 24 +8jx Chs (11)
i=1p=1 l dx, dx; dxdx, _—
I
where the prime denotes summation with [#p. dm, 1
Although in general Eqgs. (7) and (10) are quite compli- ~ SHmyEmy 7 F(m)S+ (15)
cated, simplifications may occur in certain cases; and in oth-
| ers, it is found that these equations actually give exact rather
| . . dm'z
| than approximate values for the means, variances, and cova- =b(m,;—ymy), (16)
| riances of the dynamical variables. These special cases are dr
discussed in the Appendix.
idfi:zf'(m )§,—2C+ 3 (17
II. A NONLINEAR STOCHASTIC dt i B
SPIKING NEURON MODEL
We will apply the above framework to determine the f__z_ =2b(C 15 13
means and second order central moments of a two- de (Crp=5a). A
component neuron model with additive white noise in the
first cofnponent. There are several such systems [19] but we dC,
have chosen the Fitzhugh-Nagumo system which has been £n =bS| =S+ Cg[F' (m,)— vE]. (19)
employed to provide insight into the more complex
Hodgkin-Huxl t f fi tions. It shares with the
odg uxley system of four equation i With f’(ml)zk[2m1(1+a)—a—3mf] and  f(my)

latter the properties of subthreshold responses, solitary
waves (action potentials or spikes) in response to suitable

stimuli, as well as repetitive activity (periodic solutions) in .

certain ranges of stimuli.
dX=[f(X)—Y+I]dt+BdW, (12)
dY =b(X—yY)dt, (13)

where X=2X(¢) is the “*voltage” variable, Y=Y (t) is the
recovery variable, W={W(t),r=0} is a standard Wiener
process, ! is a deterministic input current (stimulus) which is
taken to be a constant, and » and y are positive constants.
The function f is a cubic,

flx)=kx(x—a){(1—x), (14)

where 0<a<1. Usually one takes a<7 in order to obtain
suitable suprathreshold responses.

Application of the method outlined in the preceding sec-
tion gives the following five coupled differential equations
for the approximate means, variances, and the covariance
between the two components:

=k[2(1 +a)—6m,], Egs. (15)-(19) may be solved numeri-
cally. : :

We give an illustrative example of the computation of the
moments with the following parameter values: £=0.5,
a=0.1, p=0.015, y=0.2, I=1.5, 8=0.01. We employed a
fourth order Runge-Kutta method with a step size of Ar=0.1
or smaller. Initial conditions were chosen as m (0)

C=my(0)=1, §,(0)=5,(0)=C,(0)=0.

Results are shown in Fig. 1 for the means, m,(z) and
m,(t), in Fig. 2 for the variance of the first or potential
variable, S,(1), and in Fig. 3 for the variance of the recovery
variable, S,(r), and the covariance of the two components.
For these quantities, excellent agreement was obtained with
the corresponding quantities for Monte Carle simulations
which are not shown here. When the noise parameter 3 in-
creases sufficiently, the systems (15)—(19) for the moment
approximations may eventually become unstable and peri-
odic solutions no longer pertain. We plan to make a more
detailed study of simulation studies in the future.

We note that not ouly can a single space-clamped neuron
model be treated with the present method, but also a com-
partmental model in which the cell is represented by a sys-
tem of coupled ordinary differential equations, one for each
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FIG. 1. The means of X(¢) and Y () in the Fitzhugh-Nagumo
model obtained from the system of differential equations (15)-(19).
Parameter values here and in the next two figures are given in the

text.

dendritic (and possibly axonal) segment and for the soma.
We also plan to illustrate this in a future article.

IV. A NETWORK OF SPIKING NEURONS

In this section we will derive dynamical equations for the
first and second order moments in a neuronal network gov-
erned by the stochastic system (1). Note that even when de-
lays due to transmission of nerve impulses or synaptic delays
are included, this form of model can still be appropriate if

the delays are not very large.
It is useful to rename the 2n dynamical variables as
Ui=X;, UJ-+,,=Y_,-, j=1,...,n, so that the system may be

written

dU;= ¢(U1’U;+n)+fj(f)+§l Jfk@’(Uk)ld”'ﬁdef»
(20)
dUJ,.;.n:h(UJ ,Uj+n)dr.

©.025 T T u T T T T T p
a.02r
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FIG. 2. The variance, § (¢}, of the neuronal potential variable,
determined by solving the differential equations.
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FIG. 3. The variance, S,(z), of the recovery va.riablé in the
model neuron, and the covariance, C 5(t), of the voltage and recov-
ery variables calculated from the differential equations (15)—(19).

where again j=1,2,...,n. Then it follows from (7) that the
following differential equations hold for the approximate
means of the voltage and recovery variables of the n neu-

rons: B

dm_, o
: —d;" =¢(m; ,mj-i-n) +Ij(t)+k21 ij@(mk)

1 »
+ 3 Pr(m; ,mj.z.,l)Sj-i-?.(ﬁxy(mj MMien)Cjitn

n
+¢yy(mj,mj+n)sj+n+kzl ijen(mk)sk 3 (213-)

and

dmj+n
dt -

1
=h(m; ’mf+")+§ (hee(m;.mjen)S;

+2hxy(mj ’mj+n)cj.j+n+hyy(mj1mj+n)Sj+n]’
‘(21b)

where j=12,...,n.
We can also find the equations satisfied by the second
order moments for each network neuronal variable. Using

(10) we have, for 1ssj<i=<n,

dCU

Tir_“ = [¢’x(mf !_‘mi-}-n) + ¢x(mj vmj+n)]cij

+ ¢’y(m£ rmi+n)ci+n,j+ Gby(mj smj+n)ci,j+n

+ B+ 32 (22a)

When n+1<i<2n, 1<j<n, we find
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dc

ntq.j _

dt [¢x{mj:mn+j)+hy(mq 1mn+q):lcn+q,j

= Qby(mj ,mn+j)cn+q,n+j+hx(mq 1mn+q) qu

n
+j§; @’(mk).fka,,_,,-q'k, (22b)

whereas when n< j<i=<2n, the covariances are

dcn+q.n+r

dt- = hx(mq smn+q)cq,n+r+hx(mr rmn+r)Cn+q,r

+[hy(mq rmn+q)+hy(mr ’mn+r)]Cn+q.n+r’
- (22¢)
where ¢ and r range from 1 to n.

The following relatively simple differential equations for
the variances are obtained:

4as;
dt =2[¢:(m; ,mi+n)S; +¢’y(m; Mien)Ci, :+n+ﬁ: 1,
=1,...,n (23a)
and -
d'sn+q
T=2[hx(mq smn+q)cq,n+q+ky(mq vmn+q)Sn+q]’

- g=1,..,n. (23b)

Using (21)—(23) the more important statistical properties of
the network may be obtained when the random disturbances
are not very large and any deterministic stimuli are fairly
‘small and intermittent. For example, in the Fitzhugh-
Nagumo case, one takes

d(x,y)=f(x)—,

where f( ) is given by (14). The numerical solution of these
equauons, even for considerably large n, does not present
major problems with modern computers. We plan to report
solutions and their properties for various network dynamics
and architectures elsewhere.
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APPENDIX
In this appendix we consider some simplifications which

_occur in certain special-cases of the system of equations con-
sidered in Sec. II.

1. Additive noise terms

If we assume that all coefficients of the dW, in (3) are
functions of time only, g;,=g (), we may set

g} gx(6)=p%1), (AD)

in which case the differential equations for the variances
simplify to

ds (r) af; B )
Tdr 2[[ ox; ] Sj'}'gj [E;;} Cyi; +16j(f)-
(m,e) (m,)

(A2)

Two components

There are many classical nonlinear models in which there
are two components. Examples are the Lotka-Volterra sys-
tem of predator-prey interactions and many reduced neurcnal
models, one of which will be considered below. We let the
governing stochastic differential equations be

dX=f(X,Y.0)dt+a,()dW +ay()dW,  (A3)

and
dY=g(X,¥,0)dt+b (£}dW +by(t)dW;, (Ad)

where the coefficients of the noise terms are deterministic
functions of time. Then we have the following five coupled,
generally nonlinear, equations for the two means, two vari-
ances, and the covariance:

. dml 1
-d_t=f(m’t)+ 5 fox(mst)51+fyy(mst)52

+f.v:y(m’r)ci2}’ (AS)
dr =g(m, t)+ [8x:(m,1)S, +g,,(m,1)S,
+gxy(m1r}C12]r (Aé)
om0 St f(mCal+ e, (A7)
d.S‘2 2
S =a0g,(mn)Sp+gmCul+ A1), (A)
dC;
dr "'fy{m r)SZ+[.fx(m’:)+gy(m r)]C12+gx{m E)SI!
(A9)
where a’=a +a2 and B*=b%+b2 and subscripts denote

dlfferennanon with respect to the mdlcated variables.
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2. The general linear stochastic system

If all of n stochastic equations (3) are linear we may write

n
dX ()= El A (DX () +ay(r) |dr
q=
+§1 21 quk(r)Xq(t)-f-bjk(r))de(r).
=1\ 4=
(A10)
In this case the differential equations for the means become
dm (1) < '
_j;__=q§1 4.ji(r)mq(z)+aj(:), (Al1)

and this system may be solved explicitly by employing its
fundamental matrix. The equations for the covariances are

dC;, : '
—L =AJESL+AUSJ+ ; AJIC,[+§ A”Cb
J

dt
§ . :
| +k21 gu'k(m»f)gjk(m,f)+gl BB jxS)
n
) +2 Bl'lkijkClp]s (A12)
i#p
where
n
g,-k(x,r)=:fs,-k(r>+q§l B jgi(1)xg- (A13)

The differential equations for the variances follow from this
formula on setting i =j. The variances and covariances may
thus also be obtained explicitly using the fundamental matrix
because the inhomogeneous terms are known. Furthermore,
all the differential equations for. the means, variances, and

covariances so obtained are the same as those satisfied by
these quantities exactly [20]. We may conclude, appealing to
uniqueness theorems for the solutions of linear systems of
differential equations, that the above approximation proce-
dure gives exact results for a general linear stochastic system
of the form of (A10). A simple verification of this follows.

An example

We will illustrate in a one-dimensional linear case that the
first and second order moments predicted by the approxima-
tion procedure coincide exactly with the known values. The
following stochastic differential equation has arisen in vari-
ous applications [21]:

dX=uXdt+ ocXdW, (A14)

where it is assumed that X(0) =x, with probability one. The
transition probability densities for X(f) and its moments are
known exactly, since a monotonic transformation takes X to
a Wiener process. Letting the mean and variance of X(t) be
m(t) and S(t), respectively, application of the above formu-
lation gives the following differential equations for m and S:

dm B
7 T Hm, (A15)
ds
—dT=0'2m2+(2p.+a'2)S. (Al6)

The solutions of these equations with m(0)=x, and
S(0)=0 are

m(t)=xqe™, (A17)

(1) =x2e2#H (7 1-1), (A18)

which are exactly the known mean, f{t), and variance V(1)
for X(¢).
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