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Abstract

Electrophysiological properties of spiking neurons receiving complex stimuli perturbed by noise are investigated.
A semi-analytical estimate of firing probabilities and subthreshold behavior of the stochastic system can be made in
terms of the solution of a purely deterministic system. The method comes from an approximation for the
distribution function and moments of the underlying non linear multidimensional diffusion process. This so called
moment method works for general conductance-based systems and an application is presented for the Hodgkin-
Huxley neuronal model. Statistical properties obtained from the moment method are compared with direct
numerical integration of the stochastic system. The firing probability due to external noise is derived as a closed
formula. Results are given for different forms of the deterministic component of the stimulus. A generalization to
neural networks of conductance-based systems with internal currents perturbed by noise can be obtained using the
same approach. In the case of fully connected networks, a mean field population equation is derived which may be
compared to Kuramoto’s master equation for weakly coupled neural oscillators. © 1998 Elsevier Science Ireland

Ltd. All rights reserved.
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1. Statistical properties of noisy is performed by neurons. This fluctuating aspect
conductance-based models of neuronal activity has been analyzed by many
authors during the last two decades (Guttman et

It is a general rule that spatiotemporal patterns al.. 1974; Bryant and Segundo, 1976; Tuckwell,
of neural responses are noisy. Thus, one may ask 1989: Kurrer and Schulten, 1991; Blanchard et al.,

how the coding and decoding of stochastic signals 1993: Rospars and Lansky, 1993; Softky and
Koch, 1993; Mainen and Sejnowski, 1995). For
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1993) that recordings in some cortical prepara-
tions, which exhibit a high degree of variability 1n
the interspike interval, cannot be modeled by
integrate and fire models. Moreover, one may
consider that the finer details of the firing between
spikes in a train can carry information (Barlow,
1963: Abeles and Gerstein, 1988; Hopfield and
Hertz, 1995; Lestienne and Tuckwell, 1998). Thus,
concerning these coding aspects and the role of
noise, biologically plausible models neurons now
have to incorporate sufficient physiological detail.
Numerical integration of the non linear difteren-
tial stochastic systems which govern the behavior
of such single neurons or networks is often the
only helpful tool.

In that way, one can analyze the role of noise 1n
the spike event triggering mechanism. Actually,
this task may be a rather tedious one in the case
of large networks because of the necessary use of
sufficiently many trials. In some cases, however,
analytical formulas (Lecar and Nossal, 1971;
Horikawa, 1992; Tuckwell, 1992; Rodriguez,
1995) can be obtained for the firing probabilities
of nonlinear individual neuronal models under the
action of noise. Recently, (Rodriguez and Tuck-
well, 1996), we have proposed a semi analytical
scheme which may be useful for the case of net-
works and which can give accurate estimates for
the firing probabilities, in a direct manner, namely
without sampling. The Fitzhugh—Nagumo single
neuron and network models were also considered
in relation to random spike trains (Tuckwell and
Rodriguez, 1998). The inclusion of more realistic
ionic currents is now described. Our derivation 18
applicable to a large class of space clamped neu-
ronal models for which several 1onic currents are
necessary in order to reproduce the correct
behavior.

A deterministic system may be obtained for the
first and second moments of all variables of the
system from which one can get the estimates of
the probabilities of firing. In order to clarify the
presentation, only the single neuron case has been
considered here, while the results in (Rodriguez
and Tuckwell, 1996) may be used to give results
for the network. Finally, an illustration has been
given for the original Hodgkin—Huxley model

(Hodgkin and Huxley, 1952).

1.1. The stochastic system

In the following, we shall consider space
clamped models of individual spiking neurons
whose evolution may be described by an equation
of the form, in the presence of white noise

perturbation:

S = 60U + Lt 1) 47 (L)

where 7 is the membrane potential and {U,},_
2...m is an m-dimensional set of auxiliary varn-
ables. ¢(V, {U,}) is a function describing the total
ionic current ;.. across the neuronal membrane
with capacitance C, I, (¢, V') is an applied current
and #, is a white noise perturbation such that
<nn,> =f6(s— 1) where J is the Dirac func-
tion. The dynamics of the auxiliary variables takes
the form

d_d(_;i:%(r/.,{m}) i=1,2..m (1.2)

where Y, (V.{U}) =4;(V)(1 - U)— 47U,
The factors (A5(V)),_; > i—1.2...» are non linear
functions of the potential V and may take differ-
ent forms according to the type of cell considered.

1.2. The moment method

Our aim is to derive directly from the stochastic
differential Eqgs. (1.1) and (1.2), a deterministic
dynamical system for the moments. This can be
done with the help of the following assumptions
which concern the distribution of the solutions.
Let us assume that the transition function of the
process Z(1) = (V(¢),{U,}(¢t)) is concentrated near
its mean point and is symmetric about this point.
Then third and higher order odd central moments
are close to zero, fourth and higher order even
moments are small relative to the second mo-
ments (see also Jaswinski, 1970).

Thus, it is possible to obtain approximate for-
mulas for means of continuous functionals
G(Z(t),t) by retaining up to 2nd order terms in a
Taylor expansion of the distribution function
about the mean. In the following, we call (v,{4;§)
the means of the membrane potential V7 and the
recovery variables {U,}. S, is the variance of V,
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Cru, (resp CU;Um) is the covariance of V and U,
(resp. U, and U,,) while H,=(0H/on), H, ;=
(0°H/00df) represent the first and second deriva-
tive of H(v,{u,;}) which are evaluated at the mean
point. Using Ito calculus, one obtains the differ-
ential system:

dv |
. qu?(v,,y],uz,. ' hum) an Iext(rﬂv) T3 QﬁvaV
df 2
M 1 5%
T Z @y Crone T 5 Z Qﬁ,uknyUkU! (1.3)
k=1 kKd=1

Thus, there is a coupling of the mean with the
variance S, and covariances of all other variables.
The means of the variables U,,U,,...,U,, satisly a
system of the form

du
d¢

I- ]
= W.f(v:ﬂlwuib ‘oo ?ﬂ!ﬂ) T E WE,VFSV T w.z',vﬁf.CVUf

i=1,2...m (1.4)

A term like y;,, represents the second derivative
of w.(V,U,,U,,...,U,) with respect to V and U,
evaluated at (v,4,,ls,....1,,).

Now, it can be shown that the variance S, of
the potential obeys the following differential

equation

dsS
dz

- "_ 2(¢’v + Ie.xa‘,w)SV + 2’ Z qbﬁkCVUk T /82
k=1
(1.5)

Finally, the systems of equations for the covari-
ances C,,; between the potential and the recovery
variables rUe,; and the covariances C;; , between
the recovery variables U, and U, are such that

dC, .
= Sy (bt T+ Y1) Cr
T Z qb;tch;UI. [ = 15 2...m (16)
[ =1
dC, ¢
dz'; U — '70;', vCVLz}. +- 'r&j, L-CVUI, _I_ (w.f:. i, +- qu *“j) CU:’ U;
[<j=12...m (1.7)

Thus, we obtain a system (I') of ((m + 1) (m+4)/
2) differential equations for the approximate first
and second order moments of the noisy conduc-

tance-based neural system. Moreover, it can be
shown (Tuckwell and Rodriguez, 1998), that the
probability that, at a given time ¢, the voltage
variable V(r) is above some threshold ¢, can be
approximated by

y(t) — 9)
P,(t)=1—-G
o(1) (\/Sv(f)

where G(.) is the standard normal distribution,
v(t) and S,(r) being the mean and variance of
V(t) which are obtained as solutions of (I').

As a result, the derivation of the solutions of
this later system is helpful for the knowledge of
the firing probability at any time. Generally, how-
ever, analytical solutions of (I') cannot be ob-
tained and the only way to go turther rests on
numerical integration of this deterministic system.
As compared with the integration of the stochas-
tic system (1.1, 1.2) with the use of sufficiently
many samples, it can be said that the integration
of (I') i1s quite efficient with respect to computer
time. Actually, this task has been done for rela-
tively small noise amplitude in order to justify the
hypothesis initially made on the distribution func-
tion. However, this amplitude has been chosen
sufficiently high to allow the neuron to produce
additional spikes.

2. Application to the Hodgkin—Huxley neuronal
system

2.1. The dynamical system of approximate
moments

The stochastic neuronal model of Hodgkin-
Huxley is a particular case of the conductance-
based system where m = 3 and the ionic currents
function is given by ®(V, U, U, ...U,,) = (vp —
Mg + (vg — gn® + (Yna — V)gnan*h  where
g0, Ox, Sne VLo Vi VNa are constants and the re-
covery variables (U,, U,, U;) are usually denoted
(m, h, n) with the meaning of sodium activation
and inactivation and potassium activation. Their
dynamics is such that W, (V, U, U,, ..., U,)=
ANVY (1 = U) = AXV) U, where (A4XV )= 1.2, -
1,2, 3 are of the type
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K
k . fr?(V)
AiV) = akest ) 4 pk

The functions (f5(V), g5(V )k _1 2:-1.2 3and the
constants (a%, b¥), _ ,;_, » 3 are given by:

A7) =(2.5-0.1V) V) =4

(N =025-01V) bl=1 g¥V)=0.055V
b2 =0

A =007 al=1 fAN=1 d3=1

gl (V)=005V bl=0 gXV)=3-0.1V

a; =1 as =1

b2 =1

AVy=0.1-001V) a3=1 [f3()=0.13
az =1

gl =1-0.1V bl=—1 g3(V)=0.012V
5=0

The various derivatives of ®(V, U,, U,, ..., U,,)
which are taken at the mean values

(V, ti1, tyy oers H,,) ATE:

O, = g + git3 + Gt ih

D, = — 38,411 D = — &uitis Dy,
= — 4g, 43

®, = 3(Unu = V)EmhTHas D, =(Una— V)it D,
= d(vg — Vgl

(I),u:hul = O6(Upna — V)En:ﬂiﬂm (D,u:y;:; = 12(vg — V)3

(I);zlyz — 3(UN;-1 o V);‘Lt%j (I)w — (I),uz,uz = (I)ﬁ];.s3
—® = =0 (2.1)

1K MM 5

The derivatives of ¥, for each i =1, 2, 3, are
leﬂ_, y A:]., v(v) (1 B ﬂ.!) T AIZ, v(V)Juf
\Pf, vy A .EI, vv(v) (1 o ‘L{E) o Afz, w(v)auf

IPET, Vi, - = 51}(‘4 }, u(v) T Azz 1:'(v)) .] — 1: 25 3
Tf, ﬂj - (SU(A .}, v(v) + Ai v(v)) .] — 15 2:' 3
Vo o=0 Vim=1,2,3 (2.2)

L, Vf"um

Finally, the system (I'), which is composed here of
14 equations, can be obtained in terms of these
formulas. It describes the evolution of the approx-
imate means and variances of all variables and the

covariances between potential and auxiliary vari-
ables of the Hodgkin—Huxley system.

2.2. The input current 1., (1, V)

We have performed the numerical integration
of this system for various input currents I(¢, V).
They have been taken as the sum of a potential
and time dependent current, [ .(f, V) and an
external current I,(¢f) which 1s only time depen-
dent, namely 1. (t, V)= I,.(7, V) + Lo(1).

The first part has the meaning of a synaptic
current where there appear three groups of vari-
ables which are chosen in a random way and then
fixed with respect to the white noise perturbation:
L6, V)=2" a0(t—t;)( — V+ E;). These vari-
ables are: {a;},_, __  which are independent and
identically uniformly randomly distributed on
{0, 1}. These variables represent amplitudes of
synaptic currents occurring at instants ¢z, which are
randomly chosen in such a way that time intervals
t,,,—1 are exponentially distributed with
parameter 6. Moreover, for each i, g(7) 1s a
synaptic conductance, for a synaptic event occur-
ring at time ¢, which is defined as g,(f) = a,x(f —
t).e is an alpha function of the form
() = dar(€xp (—t/7)) —exp (—#/75)). Finally,
for a given choice of gaussian variables v; with
mean v and standard deviation o.E;=
Esyn xv;, i=1,2,..., N represent synaptic rever-
sal potentials. The second part of the mput
current I,(¢) is only time dependent. It has been
chosen as a step function [(f)=imax for 7| <
t<T,and I,(t)=imin for 0 << T, or I, <t <
T,. By taking various values for the parameter
«... which modulates the amplitude of the synap-
tic conductances, it has been possible to control
the spiking and non spiking activity of the model
neuron when the amplitude of noise f is varying.
All other parameters have been fixed at the fol-
lowing values: 7, = 1.0 ms, 7, =0.01 ms, 0 =15
ms, E,,, =70 mV, imax = — 1.0 pA, imin = — 2.5
pA, T, =35.0 ms, T, =95.0 ms, 75 =100.0 ms.

2.3. Numerical results

As a first step, the parameter «,,, may be
chosen such that the behavior is under-threshold
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without noise. When the noise is acting and when
0 <pf <1, one or more spikes may be created.
When «,,.. belongs to an interval {«, o}, only
one spike is emitted (here o, = 0.1, «; = 0.14). In
Fig. 1, we show a typical result which 1s obtained
when «.... = 0.13 and f = 0.3. Several sample tra-
jectories are plotted on the top of the figure with
the occurrence of a spike which is due to noise.
The means of the potential and the sodium 1nacti-
vation variable are shown as they are obtained
from the direct integration of the stochastic sys-
tem with 1000 trials. It has been plotted on the
same figure means as solutions of the system (I').
Actually, the two curves are quite indistinguish-
able, except around the times of occurrence of
spikes. In the same way, a comparison may be
made for the potential and sodium 1nactivation
variances (see Fig. 2).

Firing probability estimates can be made for
events of the kind considered above (spike emis-
sion around 7, =75 ms, Fig. 1). This has been
done when «,., takes different values. In Fig. 3,
Max(P,(1)), where P,(t) has been defined above,
is plotted (dashed lines) for o, = 0.12, 0.13, 0.14
using (') (from left to right). On the same figure,
with values of Max(P,(t)) which are restricted to
the indicated range, is shown, using 1200 trials,
the fraction of all trials such that V> ¢ with an
evaluation around the time of spike emission.
Along the same lines, we have considered, 1n a
second step, the case where o, i1s high enough

191

(o0.., =3, for example). There may be spiking
without noise, additional spikes may take place
due to noise and the results are of the same kind
as before.

3. Mean field theory for stochastic
conductance-based neural networks

It is possible to extend the results of Section 1
to networks of conductance-based models (see
Rodriguez and Tuckwell, 1996). We present here
another way which may be useful for the study of
the global behavior of these systems. Here also,
this problem is generally difficult to solve but
there are some situations where approximation
methods may give new insights. One such case
occurs when neurons are globally coupled 1n net-
works. Actually, our aim is to go beyond weak
coupling between cells, which may be viewed as
oscillators, along a phase reduction procedure
(Ermentrout and Kopell, 1990; Kuramoto, 1991;
Hansel et al., 1995) and to derive a mean field
population equation which may incorporate all
the dynamical variables of the cells. Let us recall
that such an approach has been done for integrate
and fire neurons (Usher et al., 1993). We give here
only a sketch of the derivation. The dynamical
variables of each neuron are denoted X =
(V,{U.},s) where V is the membrane potential,
(U} are activation-inactivation variables, s 1s a

samples {(mV)

potential mean (mV)

Ueall UOeANDEBUl LWUNIPOS

50

60 70 80 90

time (ms)

Fig. 1. Potential and Sodium inactivation means.
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Fig. 2. Potential and Sodium inactivation variances.

synaptic variable. A typical system (Golomb and the probability distribution of the stochastic vari-

Rinzel, 1994) for N globally coupled neurons, ables {f”“}k .~ will  be  denoted
with k=1, 2, ..., N, is given by: p (X1, X 2 ... X™). We define the ensemble vari-
qV* ables as gwen for each UeR", by n *(U) =
C P = p(V*,{U}, 5°) Ly N _6(X7"—U)...0(Xy—U,) and we take

expectations of these variables w.r.t p,, namely:
Joy il - n(U,1)= <n®(U) >
=22 (V7 — (1 ot . * pr: L.
N ( Vsyn) E‘l s+ P With the help of the Fokker Planck equation, 1t
dU" is possible to evaluate (0n/dt). One obtains:
= yHVEAUSY) i=1,2...m -
on  ~ 0 = ~  ~
= (0.1) == (FOn(T, 1)
L f oU
FTi = M, (V*) (1 — 5%) — M,s" (3.1) p
+ Joyn = Vi jdXG(X U)
We have used in (3.1) the same notations as in
Section 1. Moreover, y* are white noises such that
{y¥yly = 6%5(s —t) where 6* is the Kronecker (e (Uynx(X)) 4 (‘B =n(U. 0)
symbol. M,(.) is a given sigmoidal function of the (3.3)
potential, M, is a constant, J, and V, are the
. . Here
maximal conductance and reversal potential of
the synaptic currents. A general formulation of 0 J
. . . . ' H(T) = — H(U
the dynamical behavior of such interacting neu- oU (V)= 2i- LoU, (0),

rons 18

dXx*

P J N o o =~
_ Fm+ 2 Y G, X9 + frik)
df N JFF#Fk
k=1,2,..,N (3.2)
where ¥ #%(t)eR", F, B R"—>R", G: R" « R" >

R*andn=m+ 2.
[n what follows, we shall consider noise pertur-
bations as acting only on potential variables and

This equation is exact for these globally connected
systems. To go further, we remark (as 1n
Kuramoto (1991) for phase systems) that fiuctua-
tions of nx(U) are small, for N sufficiently high
and are of the order (1 /\/ N). Thus, one has the
following estimate (nx(U)n*(X X)), &
n(U, H)Hin(X, 1)).

Finally, a mean field non-linear equation may
be derived from the above exact equation
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Fig. 3. Firing probabilities.
on

R N ST T
= (U, 1) = =7 ((F(U)H(Un 1))

+ Jom j AXGX, Tn(T, nn(X, 1)

+ﬁﬁ%n(ﬁ ﬂ) (3.4)

This non linear partial integro-differential equa-
tion may be viewed as a generalization of the
population cquation of Kuramoto (1991) (this
later has been derived for oscillatory neurons
under weak coupling). In a work in preparation,
(Gandolfo et al., 1998), solutions of this equation
are investigated in order to derive informations
about synchronization and clustering effects of
these globally coupled conductance-based neu-
ronal systems.

4. Conclusion

We have shown that the moments of complex
conductance based models of the Hodgkin—Hux-
ley type which are perturbed by noise can be
obtained as solutions of purely deterministic sys-
tems. Moreover, this moment method has ap-
peared to be rather efficient in the prediction of
firing probabilities when the noise is superim-
posed to rather general external synaptic mputs
which are acting on the neuronal model. These
statistical quantities may be readily obtained from

simulations of the stochastic system. However, as
it avoids the necessary use of many trials, the
moment method appears to be useful in the case
of systems with a great number of recovery vari-
ables and when such neuronal models are con-
nected in networks. In that case, for globally
coupled neurons, the smallness of fluctuations of
the population variables allows the derivation of a
mean field equation which may be used for a
description of the global dynamics of the network.
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