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Signal transmission enhanced by noise has been recently investigated in detail on the single compartment,
also referred to as single point, leaky integrate-and-fire model neuron under a subthreshold stimulation. In this
paper we study how this phenomenon is influenced by taking into account the spatial characteristics of the
neuron. A stochastic two-point leaky integrate-and-fire model, comprising a dendritic compartment and trigger
zone, under periodic stimulation is studied. A method of how to measure synchronization between the signal
and the output in both, experiments and models, is proposed. This method is based on a distance between the
exact periodic spiking, as expected for sufficiently strong and noiseless stimulation, and neuronal activity
evoked by a subthreshold signal corrupted by noise. It is shown that qualitatively the same phenomenon,
phase-locking enhanced by the noise, as found in the spatially unstructured neuron is produced by the spatially
complex neuron. However, quantitatively there are significant difterences. Namely, the two-point model neu-
ron is more robust against the noise and therefore its amplitude has to be higher to enhance the signal. Further,
it is found that the range of the critical levels of noise is larger for the two-point model than for the single-point
one. Finally, the enhancing effect at the optimal noise is more efficient in the single-point model and thus the

firing patterns at their optimal noise levels are different in both models.

PACS number(s): 87.10.+¢, 07.05.Mh

I. INTRODUCTION

The single-point models, in which all the properties of a
neuron are collapsed into a single point 1n space, appear,
besides the cable models, to be the most common formal
description of the neuronal activity [1]. The most frequently
applied, studied, modified, and generalized among these
models are, as a compromise between tractability and real-
ism, those which are based on the leaky integrate-and-fire
(LIF) concept; for a recent review see [2]. The above-
mentioned preference of the single-point representation is
also obvious in the studies on the stochastic resonancelike
phenomena in neuronal models (Refs. [3—14] and many oth-
ers). A great advantage of the single-point abstraction 1s 1ts
relatively good mathematical tractability and transparency of
the achieved results. Another type of approach to the neuro-
nal modeling is based on considering model neurons com-
posed of many compartments (for example, Baldi et al. [15]
studied a cerebellar Purkyne cell model containing a total of
4550 compartments). These models are investigated mainly
by using software packages specifically developed for this
purpose [16—18]. The questions posed in these two ap-
proaches usually do not overlap. The former one is more
oriented on the studies of neuronal functioning in an envi-
ronment (networks, input-output properties) whereas the lat-
ter approach aims at revealing the properties of the neuron
itself. The inspiring question for this paper is whether the
studies on the input-output characteristics could gain some
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new information from such, at least minimal, compartmen-
talization of a neuron.

A typical neuron has a rather complex anatomical struc-
ture. However, at the basic simplification, it can be divided
into two distinct parts. It is the dendritic part where the mput
to the neuron takes place and the trigger zone where the
response to the input is generated as the output signal. Of
course, in the single-point models these two parts are col-
lapsed into one, despite that their functioning is difterent.
Therefore, several attempts have appeared in the last decade
that generalize the single-point models, making them bio-
logically more relevant but still mathematically tractable.
Kohn [19] proposed a two-compartment model and similar
models were further developed and studied {20-25]. It has
been shown in [22,23] that the activity of the two-
compartment model is less sensitive to abrupt stimulation
changes because these are smoothened out in the transmis-
sion from the dendritic compartment to the trigger zone. The
delayed response of the two-point model is a consequence of
the fact that the input takes place at a compartment ditferent
from that at which the output is generated. Further, the
model predicts serial correlation of intervals between neuro-
nal firings, interspike intervals (ISIs), which is a phenom-
enon often observed in experimental data but not reproduc-
ible in stochastic single-point models under time-constant
input. Finally, as shown in [22], the two-point model neuron
is characterized by a lower sensitivity to the input intensity
and a larger coding range than the single-point model. All
these results were derived for time-constant signals and were
based on the assumption that the mean discharge rate is used
as the neuronal code. The assumption (implicitly contained
in most of the studies on input-output characteristics) is quite
realistic because the rate code is one of the basic modes of
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signaling in the nervous system, for example for the stimu-
lation intensity [26]; as the stimulus intensity is increased, an
increase in the neuronal activity is expected to follow almost
immediately.

Periodic forces in real neurons come either from the ex-
ternal world in sensory systems or are caused by periodically
fluctuating conditions within the neuronal network or, fi-
nally, appear within the neuron itself. The sources of peri-
odic stimulation in a model neuron, at least for the LIF
model, were studied in [27] There, the periodic signal,
which is influenced by the activity of the neuron under con-
sideration to such an extent that it resets the phase of peri-
odic forcing at each neuronal discharge, is called the endog-
enous one. The periodic signal which evolves independently
of the activity of the studied neuron is called exogenous.
There is no doubt about the existence of periodically chang-
ing internal conditions in a neuron, but these are not so easy
to manipulate experimentally and probably have a smaller
effect than externally imposed periodic forces. Due to this
limited biological relevance of the endogenous periodicity,
and due to the fact that the paper is oriented towards study-
ing the transfer of the external signal by a neuron, here we
restrict ourselves to the exogenous periodic input only. A
detailed comparison of the effect of noise in dependency on
exogenous versus endogenous periodical input in the single-
point LIF model was presented recently by Shimokawa et al.
[12].

The aim of this study is to investigate the effects of peri-
odic stimulation on the simplest spatially structured neuronal
model (two point) in comparison with those evoked by the
same kind of stimulation applied on the classical nonspatial
(single-point) LIF model. At first, the subthreshold properties
of the models are summarized. These are necessary for being
able to define comparable input signals for both models.
Then, a method for measuring the effect of noise on the
regularity of firing is proposed. This measure permits us (o
define an optimal level of the noise enhancing the signal.
Further, on the basis of this measure, we conclude that the
same effects are present in both models, however, with a
substantial quantitative differences: (i) the optimal noise 1S
larger in the two-point model, (ii) the enhancing effect of the
optimal noise is weaker in the two-point model than in the
single-point one and thus the firing patterns at their optimal
noises differ, and (iii) the range of the noise close to the
optimum is larger in the two-point model than in the single-
point one.

II. THE MODELS

A. Single-point model

In the stochastic LIF model, under a periodic stimulation,
the behavior of the membrane depolarization X is described
by the stochastic differential equation

X

-

dX = Fu+ A cos{wt) |dt+ o dW,

X(z‘g)=x0, f,}#fo (21)

where W is a standard Wiener process, 7>>0 is the membrane
time constant (7=RC, where R is the membrane resistance
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and C is its capacitance), w, A, and o{>0 are constants
characterizing the input and its variability, 7y 1s the moment
of the last firing of an action potential, and o is the fre-
quency of the driving force modulation (T'=2m/w 18 the
modulation period). The firing of an action potential 18 iden-
tified with the first crossing of X through a firing threshold S,
S>x,. At these moments, the membrane potential 1s repeat-
edly reset to its initial value x4, and for simplicity it 1s as-
sumed to be equal to zero, xo=0. Due to the exogenous
character of the signal, the periodic force continues and does
not depend on ty. The phase-locking effect, in which the
neuronal firing synchronizes with the periodical stimulation,
has been both theoretically [in Eq. (2.1) using the determin-
istic signal characterized by o;=0] and experimentally (ac-
tivating a neuron by periodically changing intensity of stimu-
lus) investigated for quite a long time (e.g., [28-31] and
many others). Again, mainly the models based on the LIF
concept were used for this purpose, but in the deterministic
VErsions.

For studying the model (2.1), three parametric regions
may be defined: (1) the permanent suprathreshold in which
the constant part of stimulation is sufficient to reach the
threshold, (2) the permanent subthreshold in which, whatever
is the frequency w, no sustained firing exists and only a
transient activity may appear at the onset of stimulation, and
(3) mixed, in which the periodic component determines if the
threshold is or is not reachable. For the mean of X in the
absence of threshold and under the condition #,=0, holds

EX(t)=1 u(1—e ") A
= 1+ (wT)?
cos{ wt) | iy
X T-—-—--ersm(mt)-e YT (2.2)

The subtheshold stimulation occurs when max{E(X(r))|
>0}<CS, which implies

/ A,
pt -
L V1 (wn)?)

<S. (2.3)

The stimulation is of permanent subthreshold type if 7(u
+A)<S§, of permanent suprathreshold type if 7u>S§, and
the mixed cases cover the remaining part of the {u,A |}
space. In these mixed cases, the value of stimulation fre-
quency w decides whether the stimulation is actually su-
prathreshold or subthreshold.

B. Two-point model

The stochastic process X, defined in Eq. (2.1), represents
the membrane depolarization at an abstract point ot a neuron,
which is generally identified with the trigger zone. However,
the input, which takes place mainly at the dendritic part of
the neuron, is also represented here. This concentration of all
properties into the single point is the source of uncertainty of
the single-point models. Thus, the description by X 1s, in the
two-point model, replaced by a couple {X,, X} representing
depolarization in the two distinct parts. The model we ana-
lyze here is based on the following set of hypotheses.
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(i) The neuron is assumed to be made of two
interconnected—dendritic and trigger zone—compartments.

(ii) The stochastic input is present at the dendritic com-
partment only.

(iii) The potentials of the two compartments are described
by leaky integrators with a reset mechanism at the trigger
ZOne.

In the two-point neuronal model, exposed to the same
type of input as Eq. (2.1), the depolarization X, of the den-
dritic compartment is defined in the following way:

X, () 1 )
dX(t)= - 7' (X ()—X,(t)]+ v+ Aycos(wt) | dt

and the depolarization X, at the trigger zone 18

)fz(f)

T

dXz(f):( [Xl(f) Xz(f)])df (2.5)

where 7, is a junctional time constant; the other parameters
have the same interpretation as in Eq. (2.1). It is assumed In
equations (2.4) and (2.5) that the membrane time constants
are the same at both compartments, 7= 7, = 7,, but this as-
sumption can be easily removed. In accordance with the
integrate-to-threshold scenario, in the moment when the de-
polarization X, at the trigger zone reaches the firing thresh-
old S, the value of the process X, is reset to zero while the
process X, continues in its evolution. 1f the occurrence time
of this event is taken as the time origin, then the ISl is the
first-passage time across the boundary S for X, under the
initial conditions X(¢g)=xo and X,(zy)=0, where x;; 18
the value of the dendritic potential at the moment of the last
spike. For the deterministic input (o,=0), the above de-
scribed model was studied in detail by Bressloff [20].

First, to be able to define the subthreshold stimulation
regime in this model, we investigate the means, m,(¢)
= E(X,(t)) and m,(1)= E(X,(#)), in the absence of a thresh-
old. A general formula for the moments of a stochastic pro-
cess given by linear stochastic differential equations can be

applied to Egs. (2.4) and (2.5) (e.g., [32]). We have

dm (t) | 1
pamiail beibey ml(r)—l—;:mz(t)-i- v+ A,cos(wt)
(2.6)
and
dmo(t) 1+ ! N l 5 7
dr 7 H a0t om0 2D

For defining subthreshold or suprathreshold parametric re-
gions, we are interested only in the behavior of the moments
for large ¢ and thus we will use the initial conditions
m,(0)=m,(0)=0. The solutions of the above equations are

given by

r

|
+k3exp, —

2 1
_+_......
T, T

o
Hll(t)zkl -I-kzﬁ':xp( — _T—t

!

(2.8)

+ kycos{ wt) + kssin( wt)
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and
1 2 1
mo(t)=1,+[,exp —-;t + [,exp| — -;——--1—; t
+ [ cos{ wt) + I ssin{ wt), (2.9)
where
p7?
ll_’i"r 2T3ndk1=VT-'ll, (210)
Tv+A,+ v(Ttw)?
- ] 2+ v( )]_k% 2.1
2[1+ (7w)?]
: “1'7',,[(7‘},+27')2(V+A2)~v(’r'r,.m)z] .
3 2[(7,+27)%+(77,0) (7, +27) >
(2.12)
[ _A2 T TT, )
2 1+ (1w)? (fr,,.-l-2’:")2—l—(*1'*7'1,*(,0)2 ’
=27 (2.13)
* 1+ (Tw)? . '
and
Z - Ayw 7 (171,)°
> 2 l—l—(frcu)2 (rr+2r)2+(frrcu)2 ,
ko= A7 z (2.14)
: 1+ (7w)? > |

When comparing the means of the two- and single-point
models, Egs. (2.8) and (2.9) with Eq. (2.2), we have
E(X(t))=m(t)+m,(2). The rest of the properties 1s a direct
consequence of this one. The same periodicity is retaimed 1n
both compartments and also the same decay of the amplitude
with increasing frequency of stimulation. For large ¢ we have

m](r)=kl+\/ki-l—kgcos(wt—qbl) (2.15)

and

n-.tg(r)=£1+\/li+l§cos(wr—¢2), (2.16)
where tg¢,=ks/ky and tgd,=15/14. By taking different
initial conditions, only ¢, and ¢, change. Thus, the division
of the input parametric space analogous to that based on Eq.
(2.3), which holds for the single-point model, follows from
max[ m,(£)|>0]<S, namely,

[+ I2+12<S, (2.17)
which defines the permanent subthreshold stimulation.

The equations similar to those for the first moments can
be written for the second-order moments. Solving them, the
variances of the membrane potential at both compartments
and the covariance between them can be computed, see [23].
The relation between the variances is
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Var(X Var(X 7.7
ar(X,(¢))=Var(X,(1)) 2(r+ 1)
V TTrU% — 27 . 4ti(7+ 7,)
ﬂr(Xl(O))l 2(T+Tr) e r F

(2.18)

and as pointed out in the cited paper, the second-order mo-
ments do not depend on the deterministic part of the signal
but only on the noise, and thus they are the same as if u
=p=A,=A,=0. As we are more interested in the behavior
of the trigger zone compartment for its possible comparison
with the single-point model than in the dendritic compart-
ment, let us also present the asymptotic form of the autoco-
variance function R,(s,t) of X,, for large 7 and s. Let ¢
—o and s—oo, then the autocovariance function depends
only on the difference of these two times and for u=|7— s/,
we have

7_2 ’TZE’ ~ 27+ T ul(rr,)

(274 7, )( + T,)

T2’T e*—ua"*r

T+ T,

2(“)_ 87'
(2.19)

C. Adjustment of the parameters

Two kinds of parameters appear or are connected to Eq.
(2.1); the intrinsic parameters S and 7, which are independent
of the input, and the parameters u, A, w, and o, reflecting
the input [23,33]. We may regard w as a background (steady-
state) level of the signal A, as its time-variable component
controlled by @ and o as the amplitude of the noise. An
additional parameter 7, appearing in Egs. (2.4) and (2.5) can
be classified as the intrinsic parameter, the remaining param-
eters have the same interpretation as in the single-point
model.

An example of system highly sensitive to periodic stimuli
are the olfactory neurons {34]. The critical region for these
fluctuations is between 1 and 10 Hz, up to 40 Hz in some
other systems. Therefore, the range for realistic w in the
models is well specified. Also the intrinsic parameters of the
neurons are relatively well known, the firing threshold §
ranges from 5 to 15 mV and the time constant 7 from 5 to 20
ms. Note that the time constant is sufficiently shorter than the
period of stimulation and thus even within one stimulation
cycle the depolarization gets close to its steady-state level (if
the firing threshold does not prevent it) and thus for suprath-
reshold stimulation the phase locking in which there is only
one spike per several stimulation period is rarely observed. A
slightly different situation concerns 7, because the identifi-
cation of this parameter may require us to take into account,
in addition to electrical properties, the distance between the
compartments. To be specific, 7, has been chosen of the
same order of magnitude as 7. The attempts to specity the
values of the remaining input parameters are more compli-
cated. Even in the case of direct external stimulation, the
input parameters do not reflect the physical levels of stimuli,
but rather their transformation into the internal representation
for a more detailed discussion see [23]). There is no possi-

bility of directly measuring the values of w«, Ay, and ¢ and
an analogous statement holds for the corresponding param-
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eters of the two-point model. All these parameters have to be
estimated from the spiking activity and the task is of substan-
tial complexity even for the Ornstein-Uhlenbeck model
[35,36]. Therefore, their specifications in modeling studies
have usually a speculative character.

As mentioned above, and investigated in [22] for the con-
stant inputs, in order to compare the single- and two-point
models, their parameters have to be adjusted. To make the
same steady-state levels of depolarization, for the constant
(background) inputs we have to fulfill the condition

v 27+,
M T

: (2.20)

from which, and for the given set of intrinsic parameters 7
and 7,, if the input w to the single-point model is given, the
constant input v to the two-point model can be calculated.
Similarly, relating the amplitudes given by Egs. (2.16) and
(2.2),

(2.21)

A
A/ )

\/1+(cu1')2

the value of A, can be evaluated (it is contained in /4 and [5).

We are not going to adjust the amplitudes of noise as the
other input parameters because we will investigate them in
their full ranges; however, a preliminary hint about their re-
lationship can be deduced from the behavior of the autoco-
variance functions. For example, minimizing the difference
of areas under the autocovariance function for the single-
point model, R(u)=cr% re *'7/2, and that given by Eq.
(2.19), we obtain that the ratio between the amplitudes of
noise o, and o, follows condition (2.20). Another adjust-
ment comes out from comparing the asymptotic variances,
R(0)=R,(0), which implies

o \/2( +7) 27+ 7,)
Uy - 7 |

(2.22)

So, we have several preliminary estimates, Eqs. (2.20)-
(2.22), of the ratio between the amplitudes of the noise in the
two-point model and the single-point one for achieving their
similar behavior.

I11. THE RESULTS

A. A measure of the input-output synchronization

Before going into the comparison of the effect of the
noise in the two- and single-point models, we have to find a
suitable method for this purpose. The method should be in-
dependent of the model, preferably easy to establish m ex-
periments and the obtained results should be easy to inter-
pret. First of all, we need to realize what result is expected
and on this basis to propose a measure of the deviation
caused by the noise. For the suprathreshold stimulation, the
ideal result is achieved if the noise is completely eliminated.
Then, the neuron fires only as the signal determines. On the
other hand, for the subthreshold conditions, there 1s no out-
put in the absence of noise. Then, the ideal result is achieved
if the parameters (in the single-point model w and A;) can
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be modified in such a way that the signal is at least mini-
mally suprathreshold (increasing the signal) and again by
eliminating the noise. As we are interested in the role of the
periodic component we keep, for comparison, its amplitude
A | constant and change the background signal u to reach the
suprathreshold level. Then, we can return to our noisy signal
and measure the distance between the ideal output signal and
that influenced or enhanced by the noise. The simplest situ-
ation arises for the 1:1 phase-locking regime which is con-
sidered here; however, the measure we are going to propose
can be also generalized for other cases. So, in 1:1 phase-
locking (for suprathreshold stimulation in the absence of
noise) ISI= 7, which is the period of stimulation, and a pos-
sible measure of the noise-induced cooperative effect (noise-
induced distortion in supratheshold regime), can be taken as

A, = f “lx— TI™F(x)dx, (3.1)
0

where m>0 is a parameter and f is the ISI probability den-
sity. The minimum of A, equal to zero is achieved for regu-
lar firing at period T, f(x)= &(x—T). For m=2, the relation
(3.1) defines the mean-squared distance, however, other val-
ues of m can also be considered. It is obvious that A, 1s less
sensitive, especially for large m, to double firings within one
stimulation period than to missing one or even worse several
periods of stimulation in a row without any spike. If the
mean ISI is 7 and m =2, then A, gives a variance of 15],
otherwise

A, = Var(ISI)+ [ mean(iSI) - T1°, (3.2)

which has a very intuitive interpretation (the distance 1s
given by the variability of ISIs and the squared distance be-
tween mean ISI and 7).

To calculate the values of A, by using Eq. (3.1) requires
us to know the ISI density function, or at least for Eq. (3.2)
the first two moments of it. Shimokawa et al. [11] developed
a sophisticated method for the evaluation of the first-
passage-time density in the single-point model (2.1) under
the exogenous stimulation; however, no such method has
been available for the two-point model equations (2.4) and
(2.5), and thus, for the sake of equal conditions, we employ
a numerical simulation for both models. To estimate A,
from simulated (experimentally observed) 1SIs we calculate

5m=l E le_T

i (3.3)

where ISIs are denoted by x; (i=1,...,n). The Euler
schema with time step 0.005 ms was applied in Egs. (2.1),
(2.4), or (2.5) to calculate the times needed to cross the
threshold (half of this step was used to check the reliability
of the procedure). We are aware that simulation of the first-
nassage-time density for stochastic diffusion processes may
be unreliable, at least for some parameters (rare Crossings
caused by low noise); it overestimates the exact first-passage
time [37,38]. Therefore, the procedure was checked using the
shorter step and very low noise cases were excluded.
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FIG. 1. Behavior of the two-point model with parameters v
=2.1 mV/ms, A,=0.5 mV/ms, T=100 ms, o,=1 mV/{ms, 7,
=16 ms, 7= 10 ms in the absence of the firing threshold (subthresh-
old stimulation). (a) The mean depolarizations and single sample
trajectories for both compartments. The upper curves are for the
dendritic compartment, the lower for the trigger zone. (b) The ratio
of the single trajectory of the membrane depolarization to its varl-
ance. The upper curve shows the ratio for the trigger zone region
while the lower one corresponds to the dendrite.

B. Without firing threshold

The behavior of the two-point model even without 1impos-
ing a firing threshold reflects well some of its properties. The
mean dendritic and trigger zone depolarizations given by
Egs. (2.6) and (2.7) and single trajectories of these depolar-
izations are illustrated in Fig. 1(a). We can see that the noise
is substantially filtered out by the transition from the dendrite
to the trigger zone. At the trigger zone, the trajectory follows
the mean more closely, while at the dendritic compartment,
the noise dominates. The low variability of depolarization at
the trigger zone, with respect to the dendritic compartment,
follows from formula (2.18), which shows that, rather rap-
idly, with a time constant (7+ 7,)/(277,), the steady-state
value of the variance of X,(¢) is reached and that it is
smaller than the variance of X;(¢). The decrease of the vari-
ability level at the trigger zone implies that the relative de-
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polarization is higher at the trigger zone than at the dendrite
and it is illustrated in Fig. 1(b), where the ratio between a
single trajectory of the depolarization and a variance of the
depolarization is plotted. We can see that while the trigger
zone depolarization is below the dendritic depolarization [see
Fig. 1(a)], when related to the variance, it becomes higher.
This lower variability at the trigger zone [Fig. 1(a)], reflected
also by higher relative depolarization [Fig. 1(b)], suggests
robustness of the signal against the noise distortion and/or
enhancement present in the two-point model.

C. With firing threshold

1. Suprathreshold stimulation

The simulation of systems (2.4) and (2.5) with an im-
posed firing threshold is illustrated in Fig. 2. In the noiseless
situation (o,=0), the effect of the reset on the behavior of
the dendritic compartment is negligible and visible only at
the upper phase of stimulation period [Fig. 2(a)]. The phase
locking of the firing with the stimulation is apparent in both
situations [Fig. 2(a) without noise and Figs. 2(b) and 2(c)
with noise]. In Fig. 2(b) and 2(c), again the dendritic depo-
larization seems to be strongly influenced by the noise and
the periodic component is rather hidden in it. On the other
hand, the spiking activity looks practically uninfluenced by
the noise and preserves the pattern of Fig. 2(a) [see also the
corresponding histograms, Figs. 2(d) and 2(e)]. The ampli-
tude of the noise has to be relatively high to destroy the ideal
phase-locking effect. Nevertheless, the role of noise can be
considered as negative here because it jitters the constant

ISIs. In Fig. 2(f) the dependency of A, on the amplitudes of
the noise is illustrated. We can see that even here the mea-
sure has its meaning starting at zero for the noiseless condi-
tion and growing as the jitters of the ISIs increase with the
noise. The stronger effect of noise in the single-point modei
1S apparent.

2. Subthreshold stimulation

In Fig. 3 the dependency of A, on the amplitude of noise
is presented for different values of m (higher m stresses the
importance of missed firings) for the single- and two-point
models. We can see in Figs. 3(a), 3(d), and 3(g) that for both
models there exist optimal noise levels /' determined by

the minimum value of A . This optimum is always sharper
for the single-point model and it reaches a lower distance
from the constant IS1. This is very much apparent in the IS}
histograms constructed for the critical noise in both models.
For the single-point model [Figs. 3(b), 3(e), and 3(h)] the
histograms are better centered around the period of stimula-
tion, however, any small change of the noise amplitude o
would quickly destroy this synchronization. Defining the val-
ues of o as an optimal range of the noise for which the

distance A, is not ‘‘substantially’’ different from its minimal
value, we can see that the optimal range of o, 1s larger than
that of o, independently of m.

Equations (2.20) and (2.21) relate the input parameters of
the single- and two-point models in such a way that the mean
depolarizations are the same in both of them. For the param-
eters selected in Fig. 3 (see the figure legend), the ratio be-
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tween v and u (between A, and A;) is 3.6 (3.75). As it
follows from comparing the autocovariance functions of both
models, the value 3.6 would be also the expected ratio be-
tween the amplitudes of the critical noise. By using the ratio
of asymptotic variances (2.22), the predicted value is 4.33.
On the other hand, it follows from the numerical experiment

that the ratio between o9’ and o?' reaches 10 for m=2,

8.12 for m=1, and 5.79 for m=1/2. The optimal levels of
the noise for the two-point model seem to be slightly larger
than those suggested by fitting the characteristics like auto-
covariance or the variances. The reason follows from a lower
depth of the profile of the function A, in the two-point cases.
It shows that the two-point model cannot reach the quality of
the input reproduction whatever is the amplitude of the
noise. It means that the ISIs are more scattered around 7 1n
the two-point model and in such a case multifining 1s pre-
ferred over the missed periods.

The bursting (short ISIs) is caused by a higher level of the
noise and explains the higher ratio o5”’/o{?' than that pre-
dicted by the autocovariance functions. The different eftect
of the noise is well apparent from the ISI histograms [Figs.
3(b), 3(e), and 3(h)] and [Figs. 3(c), 3(f), and 3(i)] which also
illustrate the role of parameter m on measure A,,. By using
larger m (in our case m=2), the measure s very sensitive to
the long silent periods (long ISIs) and to avoid them in mini-

mizing A,, these are eliminated. This, on the other hand,
almost completely destroys the phase-locking effect [Fig.
3(c)] and the bursts of more than one spike are typical in this
situation. There is another source of bursting, inherent in the
two-point model, the positive serial correlation of ISls,
which produces bursting even for constant input [23]. Of
course, what value of m is the most appropriate one cannot
be answered, but the visual inspection favors Fig. 3(i), which
has the ratio of amplitudes of noises close to those predicted
by formulas (2.20) and (2.22). As mentioned in Sec. IIIC2
the values of A,, can be in reality lower than those estimated

by A, because of the overestimation of the first-passage
time; nevertheless, the shape of the curves would not be
difterent.

Bulsara [39] and Shimokawa [11] measured the input-
output enhancement by the height of the ISI density g at 7.
By using the histograms presented in Fig. 3, we can judge
the effect of m on this measure. However, we have to be
aware that the amplitudes of noise used in construction ot
these histograms are optimal with respect to measure A but
not with respect to the measure max{g(7)}. We have for
m=2: g;,(100)=265 and g,,(100)=387, for m=1:
g1,(100)=345 and g,,(100)=229, for m=1/2: g,,(100)
=273 and g,,(100) =318, where the index at g distinguishes
the one- or two-point model. We can see that for the single-
point model the maximum is reached at m=1; however, the
peaks of the histograms are rather similar as were the levels
of noise deduced for different m. On the contrary, for the
two-point model, the maximum is reached at m = 1/2 and the
optimal noise determined by max{g(7)} may be substan-
tially different from that determined by A. It follows from
comparing the histograms that the firing patterns for the op-
timal noise are different in both models and also for the
two-point model in dependency on m.
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FIG. 3. Dependency of A, on the amplitude of noise in single- and two-point models for subthreshold stimulation and histograms of 1SIs
for the optimum levels of noise. The parameters of the two-point model are »=2.0 mV/ms, A,=0.5 mV/ms, T=100 ms, 7,=16 ms, 7
=10 ms, S=6.80 mV, and the corresponding parameters of the single-point model are p=0.556 mV/ms, A= 0.134 mV/ms; (a) m=2, for

which the optimal noise is (b) o, =0.2 mV//ms, and (

¢) o, =2 mV/\Jms. In (d) m =1, for which the optimal noise is (¢) o, =0.17 mV//ms,

and (f) o,=1.38 mV/yms. In (g) m=1/2, for which the optimal noise is (h) o;=0.19 mV/+v/ms and (i) o,=1.10 mV/ Jms.

This study was intended to show the effect of a simple
spatial arrangement on the transfer of periodic stimulation by

a model

the distinction between the input site and the output site, all

IV. DISCUSSION AND CONCLUSIONS

neuron. We have seen that by

level of noise s higher,
taking into account

the properties are qualitatively retained but the quantitative
features have dramatically changed. Namely, the optimal

its effect is not so strong, and the
range of noises close to it is broader for the two-point model
than for the single-point one. A question may be posed
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FIG. 2. Simulation of the two-point neuronal model under a suprathreshold stimulation. The variable X,(#) has been subjected to a reset
to O at each time the threshold S is reached (S=6.80 mV, the rest of the parameters as in Fig. 1). The values of X () are marginally
influenced by the reset. (a) In the absence of noise (o, =0 mV/ J/ms), the neuron fires at constant intervals equal to the period of stimulation,
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illustrates the robustness of the trigger zone response (spike generation) to the noise. When noise is acting (with diffusion coetticient o,
=1 mV/+yms, which may be considered as a rather high noise level), the dendrite response to the action of periodic input shows a high
variability. On the contrary, at the trigger zone region, the siructure of the spiking activity 1s not fundamentally changed. (d) and (e}

Histograms of ISIs for different levels of noise in suprathreshold stimulation (0, =0.5 mV/yms; o,= 1 mV/+/ms). (f} Dependency of A,
on the amplitude of noise in suprathreshold stimulation for the single-point and two-point models. The parameters for the single-point model
are 1 =0.583 mV/ms, A, =0.134 mV/ms as follows from Egs. (2.16) and (2.17). Note the faster growth of the distance for the single-point

model.
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FIG. 3 (Continued).

whether this tendency would continue by higher and higher
compartmentalization of the neuron, like the modeis men-
tioned in Introduction. The problem has not been investi-
gated here and the answer can be based on an analogy only
(some details on the multicompartmental LIF model with
white as well as Poissonian noise, but in the absence of pe-
riodic stimulation, are presented in [40]). Nevertheless, if the
trend observed here by adding more compartments contin-
ues, the noise would be finally completely filtered out during
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the translation of the signal from the input site to the trigger
zone (not only the noise but also the amplitude of the oscil-
latory part). The measure A would be flat. The neuron would
fire only as controlled by the background signal or it would
remain silent. However, we know that this is not true and
several reasons can be offered to explain why. First, the input
to the neuron is not located exclusively on the most distal
compartment, but all along the neuron. Second, the serial
organization of the compartments, implicitly assumed, is not
realistic and the branching structure of real neurons can be
very complicated. By adding more compartments, even with
three units only, a new problem about their different interac-
tions arises. Third, in addition to the external noise, the neu-
ron itself generates its intrinsic noise which can be respon-
sible for signal distortion and/or enhancement. Fourth, the
temporal correlation of the inputs, not considered here, may
also play its important role in the signal enhancement [41].
Thus, the phenomenon described in this paper (enhancement
of the periodic signal by noise) can be expected in the mul-
ticompartmental neurons as well. The only, but substantial,
problem which remains to be solved 1s to quantty it prop-
erly.

There is a question of whether the ditference 1n the re-
sponses of the single-point and two-point models can be
eliminated by a proper adjustment of their parameters. Here,
we adjust the parameters through the variances and inte-
grated difference between the autocorrelation functions. The
rate of the asymptotic decay of the autocorrelation function
can also be used. However, there is always a difference be-
tween the responses of the models reflected by the qualita-
tively different behavior of their autocorrelation functions at
zero. For the single-point model (the Ornstein-Uhlenbeck
process), the autocorrelation function is not differentiable at
zero. On the other hand, for the two-point model, the auto-
correlation function of the depolarization at the trigger zone
is always differentiable, see Eq. (2.19). Thus, whatever pa-
rametrization of the models is considered, the single-point
model does not behave as a special case of the two-point
one.

The problem of the correct specification of the parameters
in LIF models of neurons was partly touched here in effort to
compare the single-point model with its two-point counter-
part. We have not performed a complete parametric study
like those presented in the inspiring papers 13,11,12], where
are studied the effects of changing the amplitude of the time-
varying component of the signal, the background signal, and
the stimulation frequency. Additionally, we could ask about
the role played by the intrinsic parameters in the enhance-
ment of the signal by noise in both, single- and two-point,
models. None of these problems were at the aim of this
study, but we only wished to show the effect of spatial ar-
rangement on the information transfer of the periodic signal.
For this purpose only one set of parameters was selected,
hopefully close to those which can be identified in real neu-
rons. [t remains an open question if the ranges of parameters
suitable for the enhancement will be changed by compart-
mentalization.

The measure of the input-output synchronization A, in-
troduced here is easy to interpret (distance to firing at con-
stant frequency) and easy to evaluate from individual ISIs (in
the same way as calculating the sample moments). Actually,
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it can be evaluated for the majority of already published data
giving only average and standard deviation (or coefficient of
variation) of ISIs and it is its greatest advantage. As pre-
dicted and confirmed by simulation, the measure is rather
sensitive, in dependency on m, to the missed periods when
no spike is elicited and different values of m can be also
interpreted in coding terminology. This sensitivity to missed
firing periods seems to be important for the single neuron
coding, when the message at the next level of the neuronal
network strongly depends on the activity of a single unit. For
population coding, in which a large number of neurons con-
verge to a single one (for example, in the olfactory sensory
system [42], a missed firing is easily replaced by firing of
other source neurons [13]. This distinction can give a hint
about the applicability of the measure A, . The other ex-
treme to missed periods is the firing of several spikes, a burst
of spikes, not very much separated, during one period of
stimulation. In such a case, if the burst is declared as a single
complex spike, the phenomenon may be considered as tavor-
able for retaining periodicity in the signal transmission.
Then, the measures of the enhancement should take this into
account, but both these situations (missed periods and bursts)
should be first carefully studied in the single-point model not
by simulation but by more reliable (analytical and numerical)
methods.

There exist other measures of synchronization by noise of
the output with periodic stimulation. The traditional one, in
theoretical as well as experimental studies on phase locking,
is based on the cycle histograms presenting the spike appear-
ance with respect to the phase of the driving force (see, e.g.,
128,43,44]. Using this method, the interspike intervals are
converted mod 2 7w/ w so they fall within the interval of one
period of stimulation. This method stresses the synchroniza-
tion over the exact phase locking. In other words, a spike
fired after a long period of silence has the same effect, if well
synchronized with the signal, as the spike fired during the
first period after the reset. We have not applied this method
for the comparison of the single- and two-point models as
the expected optimum noise levels achieved by this method
are low (waiting for a spike can be long) and simulation may
introduce substantial distortion of the results. Nevertheless,
due to the filtering effect of the compartmental structure of
the two-point model we may expect an analogous shift to
higher noise amplitude here as well as in any other method.

In [3] and for the sake of comparison also in {11], the
measure of the role of noise was based on the comparison of
values of the ISI probability density g at the value T (the
period of stimulation) in dependency on o,. The critical
noise was declared to be that which reached the maxima at
g(T) and this method was also applied previously for the
simplified LIF (perfect integrate-and-fire) model [4]. This
method, as well as that one proposed in this paper, has its
advantages and disadvantages and they are partly compared
in Sec. III. Again, as in comparison with the cycle-time his-
togram, the distance (3.1), namely for large m, is very sen-
sitive to higher harmonic firings (with periods 27 or more -
missing firings), but the maxima of g(7) takes into account
the spread of the distribution only marginally (bursting and
long ISI have the same effect). Nevertheless, in both mea-
sures the understanding of the term ‘‘optimal’ noise for ex-
ogenous stimulation is the same, being based on matching
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the stimulation period with the highest rate of firing at this
frequency. From the methodological point of view, the nu-
merical evaluation of the first-passage-time density is more
difficult than simple stmulation of ISIs.

Plesser and Tanaka [10] examined the response of the
single-point LLIF model to endogenous periodical stimulation.
They used for this purpose the most common measure of
stochastic resonance—the signal-to-noise ratio (SNR) de-
fined as the ratio of the peak, located at the signal frequency,
of the output power spectrum to its background level. The
same method was applied by Chapeau-Blondeau ef al. [45]
for the single-point LIF model analogous to Eq. (2.1) in
which the periodic component consisted of input pulses re-
ceived at constant intervals (periodic clicks) corrupted by a
Poissonian noise. However, the exogenous periodicity vio-
lates the renewal character of the output. Further, the two-
point model has nonrenewal output even under the constant
conditions being characterized by positive serial correlations
of ISIs. This lack of renewal character partly handicaps this
method [39] and its extension for exogenous periodicity in
the LIF model was proposed only recently [12,46]. Similarly,
an assumption that the output is in accordance with an inho-
mogeneous Poisson process permits us to transform the cycle
histogram to the frequency domain and to use the standard
SNR measure [13]. A great advantage of the SNR quantifi-
cation is the knowledge of the formula relating analytically
this ratio to the input signal strength, the noise intensity, and
the threshold (e.g., [47]). It remains as an open problem to
derive a similar formula for measure A,,. Especially for m
=2, the task may be tractable due to relationship (3.2) be-
tween A, and the first two moments of the ISI distribution.
There are other measures to evaluate the effect of noise on
signal transmission between neuronal input and output. The
information-theory based measures were used in [6,39]. Ac-
tually, the information transfer in dependency on the vari-
ability and correlation structure of ISIs, but irrespectively of
the mechanism of their generation, was investigated already
more than 30 years ago [48]. A measure based on Fisher
information was proposed by Stemmler [14] and for it a
relationship analogous to that based on SNR [47] was de-
rived. Another criteria can be based on correlation or coher-
ence between the input and output (e.g., [49]) and undoubt-
edly others can be found and proposed. Apparently, there 1s
a complete range of methods for quantification of the noise
effect in signal transmission and the choice must depend on
the purpose, conditions, and interpretability of the results.

We have shown that the general features of the LIF model
are also preserved if its spatial version is considered. The
results suggest that the suitable levels of the noise may be
substantially higher in real neurons than those predicted by
the single-point models. And finally, the range of optimal
noise may be in reality quite broad, which would prove a
relatively high reliability of the neuronal information trans-
fer.
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