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Abstract. An analytical approach is presented for determining the response of a neuron or of the activity in a
network of connected neurons, represented by systems of nonlinear ordinary stochastic differential equations—the
Fitzhugh-Nagumo system with Gaussian white noise current. For a single neuron, five equations hold for the
first- and second-order central moments of the voltage and recovery variables. From this system we obtain, under
certain assumptions, five differential equations for the means, variances, and covariance of the two components.
One may use these quantities to estimate the probability that a neuron is emitting an action potential at any given
time. The differential equations are solved by numerical methods. We also perform simulations on the stochastic
Fitzugh-Nagumo system and compare the results with those obtained from the differential equations for both
sustained and intermittent deterministic current inputs with superimposed noise. For intermittent currents, which
mimic synaptic input, the agreement between the analytical and simulation results for the moments 1s excellent.
For sustained input, the analytical approximations perform well for small noise as there is excellent agreement for
the moments. In addition, the probability that a neuron is spiking as obtained from the empirical distribution of the
potential in the simulations gives a result almost identical to that obtained using the analytical approach. However,
when there is sustained large-amplitude noise, the analytical method is only accurate for short time intervals. Using
the simulation method, we study the distribution of the interspike interval directly from simulated sample paths. We
confirm that noise extends the range of input currents over which (nonperiodic) spike trains may existand investigate
the dependence of such firing on the magnitude of the mean input current and the noise amplitude. For networks
we find the differential equations for the means, variances, and covariances of the voltage and recovery variables
and show how solving them leads to an expression for the probability that a given neuron, or given set of neurons,
is firing at time 7. Using such expressions one may implement dynamical rules for changing synaptic strengths
directly without sampling. The present analytical method applies equally well to temporally nonhomogeneous input
currents and is expected to be useful for computational studies of information processing in various nervous system

cenlers.
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1. Introduction

As pointed out by Mainen and Sejnowski (1995), in-
formation transmission in the central nervous system is
often accomplished by the nonlinear transformation of
continuously varying input currents to discrete trains
of action potentials. However, this transformation is
usually quintessentially noisy, which raises the issue
of how signals, if they are stochastic, can be coded
and decoded. Because electrophysiological studies via
multiunit recording are himited to several neurons and
PET studies reveal only gross features, mathematical
modeling of the dynamics of neural activity is a useful
adjunct to neurobiological experiments. Our aim in this
article 1s to illustrate a new semianalytical approach for
predicting the stochastic electrophysiological activity
of neurons and neural networks.

There has been in the last several years, much in-
terest 1n modeling and analysis of the stochastic a%-
pects of neuronal spiking activity and the associated
problems of coding. Softky and Koch (1993) have
examined closely a range of models to compare their
predicted variability in the interspike interval (ISD).
Generally they concluded that traditional integrate and
fire models underestimated the variability at high firing
rates although simulations for a stochastic cable model
(Tuckwell et al., 1984) had manifested large (>1) co-
efficients of variation for the interspike interval. Fur-
thermore, 1t was once generally accepted that neurons
often employ a frequency code to convey information.
However, especially for mammalian cortical neurons,
this simple modus operandi has been questioned. It
has been postulated that the finer details of the tim-
ing within individual spike trains may themselves be
important in transmitting and delivering information
(Barlow, 1963; Strehler and Lestienne, 1986; Abeles
and Gerstein, 1988; Hopfield, 1995; Parodi et al., 1996;
Lestienne and Tuckwell, 1997), though this has been
questioned by others (Shadlen and Newsome, 1995;
Sottky, 1996; see also Konig et al., 1996, for a com-
prehensive discussion). The actual variability of spike
trains themselves has also been mentioned as a mani-
festation of the process of information transmission as
it reflects the fact that the timing of spikes 1s important
in this regard (Mainen and Sejnowski, 1995).

There are many levels at which one can address ner-
vous system functioning. Recently there have appeared
several articles in which the properties of both de-
termintstic (for example. Schuster and Wagner, 1990;
Hoptield and Herz, 1995) and stochastic (for example,

Usheretal., 1993; Fukai and Shiino, 1995) networks of
model neurons have been investigated. Original stud-
1es of neuronal networks were often based on the as-
sumption that there are two possible states for each
element of the network (McCullogh and Pitts, 1943;
Hopftield, 1982). Models have become increasingly re-
alistic (Maass, 1995) and included physiological details
of neurons such as Hodgkin-Huxley (1952) elements
and synaptic currents of various kinds (for example,
Golombetal., 1994). In addition to studies that employ
phase analysis, sumulation, or numerical integration of
systems of ordinary differential equations, there have
been a few direct analytical approaches to problems in-
volving stochastic model neurons with synaptic input
(Blanchard et al., 1993; Rodriguez, 1995).

Although there has been considerable progress with
networks of model neurons, it is advantageous to have
analytical methods for studying them as well as the
properties of the elements of which they are com-
posed. In this direction there have been advances with
classical one-dimensional models (see, for example,
Tuckwell, 1979, 1989; Lansky and Lanska, 1987), but
these have mainly been of the linear (for subthresh-
old voltages) leaky integrate and fire type. There have
peen only a few analvtical works concerning non-
linear models with noise, including the spatially dis-
tributed Fitzhugh-Nagumo system (Tuckwell, 1987,
[992) and the Hodgkin-Huxley system (Horikawa,
1991, 1992). However it is now possible to use software
routines to implement studies of many compartmental
model neurons with both linear and nonlinear dynamics
(Bower, 1992; DeSchutter and Bower, 1994).

There are several nonlinear systems of differential

equations that have been used to model neuronal elec-
trophysiology. We employ here the Fitzhugh-Nagumo
system that has been employed recently in a net-
work model (Kruglyak and Bialek, 1993). Although
this system does not have as firm an empirical basis
as conductance-based models, it 1s relatively simple
and more directly amenable to analysis. This prop-
erty has been utilized in the case ot the space-clamped
Fitzhugh-Nagumo system with small additive Gaussian
white noise by Kurrer and Schulten (1991). These au-
thors used an expansion in terms of the noise parameter
to linearize the Fokker-Planck equation, thus obtaining
interesting insights into the diffusive effects along limit
cycle solutions. They correctly conjectured that such
effects would be important in sustaining synchronized
activity in systems of coupled (neuronal) oscillators. In
a subsequent investigation, Longtin (1993) considered




a similar system but included a stimulus with sinu-
sordal intensity in addition to the noise. The interspike
interval histograms were found to have the multimodal
form similar to those of certain sensory neurons. It was
also tfound that there was *“‘spontaneous” noise-induced
repetitive firing in the absence of the sensory stimulus.

2. Model Equations, Differential Equations
for the Moments, and the Probability
of a Spike

2.1. Model Equations

The space-clamped Fitzhugh-Nagumo system of two
differential equations has been employed to provide in-
- sight into the more complex Hodgkin-Huxley system of
four equations. It shares with the latter the properties of
subthreshold responses and suprathreshold responses,
including periodic solutions, representing action po-
tentrals or spikes in response to suitable stimulli.

We will study the tollowing corresponding stochas-
tic version of this model in which the components obey
the following equations:

dX = [F(X) =Y + I1dt + BdW (1)
dY = b(X — vY)dt, (2)

where X = X (¢) i1s referred to as the voltage variable,
Y = Y (1) astherecovery variable, W = {W (¢), t > 0}
is a standard (zero mean, variance ¢) Wiener process,
{ = [I(t) 1s a deterministic input current (stimulus),
that may be constant or time-varying, and b and y are
positive constants. The function f 1s a cubic

fx)=kx(x —a)(l —x), (3)

where O < a < 1. Usually one takes a < 1/2 in order
to obtain suitable suprathreshold responses.

The noise 1n Eq. (1) 1s additive and may repre-
sent channel noise. However 1t is usually taken as
an approximation to superimposed randomly arriv-
ing excitatory and inhibitory postsynaptic potentials
as in the linear subthreshold model, which leads to an
Ornstein-Uhlenbeck process (Gluss, 1967; Capocell
and Ricciardi, 1971). Additive white Gaussian noise
was also previously employed in the present context by
Kurrer and Schulten (1991) and Longtin (1993).

The following notation will be employed for the
first- and second-order moments: E[{X{(t)] = u1(¢),
ELY(t)] = pa(), Var [X(1)] = Vi(t), Var[Y(1)] =
Vo(t), and Cov[X (2), Y (t)] = Ki2(t), where E de-
notes expectation, Var denotes variance, and Cov
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denotes covariance. The method we shall employ has
been presented for a general nonlinear stochastic sys-
tem elsewhere (Rodriguez and Tuckwell, 1996). It
is straightforward to obtain the following (integro-
ditferential) equations for the means:

d L .

— = E{f(X)—-Y +1()] (4)
d L N

— = bE[X —yY]. (5)

To obtain corresponding equations for the second-order
moments we apply [to’s tormula for change of vari-
able (see, tor example, Gihman and Skorohod, 1972)
to obtain differentials for (X — u;)*, (Y — u,)*, and
(X — u)(Y — iy). After taking expectations in the
resulting tormulas we obtain

dV .
EL =2E[(X — u)(f(X) =Y+ D]+ 8% (6)

dVs
—= =2bE[(X =y (¥ — )], (7)

and

dK,
dt

2 = E[b(X — p)(X — yY)
(Y — ) (FO =Y+ D] (8

2.2.  Differential Equations for the Moments

Equations (4) to (8) cannot be solved as they stand, and
we seek accurate approximations to thetr solutions by
methods in Rodriguez and Tuckwell (1996) and out-
lined briefly in the Appendix A. We hencetorth denote
the approximate means by m(t), m,(¢), the approx-
tmate variances by S;(¢), $2(¢), and the approximate
covariance by Cy,(z). This gives, after simplification,
the following system of five coupled differential equa-
tions for the approximate first- and second-order central

moments:

dm 1 Iy
| = fim)—mo+=f"(m)S+1() (9)
dt 2
dm»
z“ = b(m, — yma) (10)
ds , a
-3;1- = 2f'(m)S) —2Cy2 + B° (11)
d S-
= =20(C» — v 55 12
- (Ci2 — ¥ $2) . (12)
1C 5
- dr“ = bS) — Sy + Cial f/my) — vbl.  (13)
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On utilizing (3), so that f'(m;) = k[2m (1 +a) — a
—3m*Yand f"(my) = k[2(1 +a) — 6m,], Egs. (9) to
(13) may be solved numerically.

2.3. The Probability of a Spike at Time ¢t

On the assumption that X (z) and Y (¢) are approxi-
mately jointly normally distributed, one has their joint
distribution because their means, variances, and covari-
ance are known. Assuming that there is a threshold for
action potential generation in the voltage variable with
value 8, then the following expression (see Appendix
B) gives an approximation Py(#) to the probability that
at time ¢ the voltage variable X (r) of the Fitzhugh-
Nagumo neuron 1s above threshold level and emitting
an action potential:

Po(r) — 6 —mi(t)\ .
p(1)=1—¢ ) (14)
!

where ¢ (.) is the standard normal distribution function.
This fact 1s used 1n Section 3.5. Note that even though
P, (1) can be found from m; (¢) and S, (¢), determination
of these two quantities requires the solution of all five

of Egs. (9) to (13).

3. Comparison of Analytical Results
with Simulations

To obtain the first- and second-order moments of
X(t) and Y (¢) analytically we solved the five dit-
ferential Egs. (9) to (13), employing a fourth-order
Runge-Kutta method with a step size of 5t =0.01,
or 5t = 0.1 1if sufficient accuracy was obtained. Initial
conditions were chosen such that the values of X (0)
and Y (0) were known with certainty. Thus, m{(0) and
m,(0) were given prescribed values and S} (0) = 5,(0)
= (12(0) =0. Random initial values were also em-
ployed, but their effect was predictably an increase in
variability, and this can be always incorporated by in-
tegrating over an initiai distribution.

We have considered various forms for the determin-
istic component / (¢) of the winput current and various
lengths of time for their application. Noteworthy 1s the
fact that time-dependent currents (nonhomogeneous
processes) present no problem for the present approach,
which contrasts with the difficulties encountered with
integrate and fire models. One of the main objectives
1S to ascertain under what conditions the analytical ap-
proach outlined above is in fact usetul.

Thus we have additionally simulated the processes
described by the evolution Egs. (1) and (2) using a
standard Euler method, which has proven convergence
properties (Milstein, 1994). To apply this, with X (xdt)
and Y (kdét) approximated by X, and Y respectively,
the simulation scheme consists of the recursive rela-
tions

Xee1 = Xe + [f(X) = Yy + 118t + /81N,
Yio1 =Y + b[ Xy — vy Y, ]88,

where k = 0,1, 2,... and {N,} is a sequence of 1n-
dependent and i1dentically distributed standard normal
random variables. The latter are obtained from com-
puter library routines. All numerical work was done in

double precision.

3.1. Periodic Input with Noise

We first consider the application of an input current in
the form of a regular rectangular wave. The period of
[(¢) was set at 60 time units with equal durations of

on and off phases. The amplitude was set at {ax = 1.5
during on phases. Remaining parameters were set as
follows: @ = 0.1, = 0.15,y =0.2,k = 0.5. Init1al
values are, with probability 1, X(0) = 0, Y(0)=1.1.
The noise parameter has the intermediate value
8 = 0.1. The computed results tor the means, £ (X (¢))
and E£(Y(z)) are shown in Fig. 1A, where dashed lines
represent results from simulation, and solid lines are
the solutions m(¢) and m,(¢) 1n the system of five dif-
ferential Egs. (11) to (15). 100 trials were used 1n these
stmulations—that is, 100 sample paths were generated
and the moments obtained from them.

At the bottom of Fig. 1A 1s the form (scaled) of the
input current. It can be seen that the results for the
two methods are almost indistinguishable. Figure 1B
shows the variance of the voltage variable, X (¢), ob-
tained by simulation and calculated as S;(¢). Again,
the agreement between the two methods 1s excellent
and indicates that the analytic method 1s very accu-
rate in this instance, especially considering that the
computed quantity 1s between about 0.005 and 0.03
and that there is sampling error in the simulation re-
sults. Figure 1C shows the values of the variance of
the recovery variable Y (¢) and the covariance of the two
components as a function of time, obtained from simu-
lation, along with the corresponding calculated quanti-
ties, S»(¢) and C;2(¢). The agreement for the variance
of Y (¢) 1s very good as the magnitude of this quantity 1s
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Figure . Showing the moments of the voltage and recovery variables for a regular rectangular current wave plus noise. f = 0.1. A. Means
of X () and Y (¢) for the current whose mean time-course is shown at the bottom of the figure. The magnitude of the on-phases of current is
[ = 1.5. The means obtained by simulation and by solving the differential equations for the moments are practically indistinguishable. B.
Variance of the voltage component calculated by the two different methods. C. The variance of the recovery variable as a function of time and
the covariance of the two components as calculated by the two different methods. (Continued on next page.)
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Figure 1. (Continued).

of order 0.0001. There is less agreement for the covari-
ance obtained by the two methods. Although most of
the positive peaks are in good agreement, there 1s less
agreement when the covariance values from simulation
attain their minima. When the noise parameter g was
increased to 0.25, the agreement was also excellent for
the means, the variances, and to a lesser extent the co-
variance. Thus. with nonsustained deterministic input
currents, the analytical method works very well over a
wide range of noise amplitudes.

32 Constant Mean Current with Small Notise
Short-Term Applications

3.2.1. Results for the Moments with 3=0.01. We
also investigated the usefulness of the analytical me-
thod for a sustained mean current of constant ampli-
tude accompanied by white noise. In certain ranges of
the amplitude of a constant current without noise 1t 1S
known that repetitive pulse solutions may be obtained
which mimic action potentials (Troy, 1976; Rinzel and
Keener, 1983). In Fig. 2 we show results for a constant
mean current / = 1.5, ¢ > 0, with noise parameter set
at the small value of 8 = 0.01. The initial values were
set at X(0) = 0.0 and Y(0) = 1.45. The remaining
parameter values are as in Section 3.1, except that for
both the simulations and the numerical solution of the

differential equations §¢ = 0.01, and for the simula-
tions 50 trials were used.

One can see from Fig. 2A that the means of X (z) and
Y (1) predicted by the two methods are again almost ex-
actly the same. Figure 2B shows that there is stmilar

"agreement for the variance of X (f). The agreement

for the variance of Y (), as shown in Fig. 2C, is also
very good; that for the covariance is not as close, but
given the very small magnitudes involved and the sam-
pling error in the simulation results, it is satisfactory.
Note that the absolute value of the covariance grows
here for small increasing ¢ because the initial condi-
tion was noise free yet the noise was “switched on” at

t = (.

3.2.2. The Approximate Distribution of X(1). The
simulation method enables one to investigate the dis-
tribution of X (¢) for various parameter values and for
different times. Although of interest in itself, this also
enables us to check the validity of the assumptions
made concerning the distribution of X (z) 1n deriving
the differential equations for the moments.

Figure 3 shows histograms of values of X (¢) fromthe
simulations. with 1000 trials, with parameters as given
in the previous subsection. The empirical distributions
at time ¢ = 60 seem to satisfy the assumptions, and the
<ame is true for ¢ = 80. However, for larger times, the
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MEANS FOR FITZHUGH-NAGUMO: SUSTAINED CURRENT
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Figure 2. The same quantities in Figs. 1A to 1C except that now the current is uninterrupted and 8 = 0.01. The deterministic com-
ponent of the current is such that there 1s repetitive firing without noise. A. The means of the two components calculated by the two
different methods. The two sets of results can hardly be distinguished. B. The variance of X(t) determined by the simulation method

(dashed curve) and the analytical method (solid curve). C. The variance of Y (¢) (the always positive quantity) and the covarnance of the two
(Continued on next page.)

components.
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Figure 2. (Continued).

distribution seems to be somewhat skewed to smaller
values of X (¢) violating the assumptions of the analytic
approach. Nevertheless, the assumptions concerning
the distribution are fairly well satisfied for most values

of r considered here.

3.2.3. Results for 3 =0.05. Theresults for the means
are shown in Fig. 4A when the noise parameter is in-
creased to 0.05. The variance of the voltage variable
is shown in Fig. 4B. Initial values are X (0) = 0 and
Y (0) = 1.1, the remaining parameters being the same
as in the previous two sections. However, the close
agreement between the simulation results and the ana-
tytical method of finding the moments occurs only for
small times, where in fact it is very close. This will be
elaborated on 1n Section 3.3.

Because it seemed that a key factor in the validity
of the analytic approach might be the magnitude of the
coefficients of variation of the component random pro-
cesses, we computed this quantity as a function of time
for the present case. We include a study of the coeffi-
cient of variation because it is often a useful indication
of the relative magnitide or importance of random fluc-
tuations in relation to mean values (Softky and Koch,
1993). It is seen 1n Fig. 4C that

JvarX{t)
E(X(¢))

is small except where the variance of X () 1s large and
that this growth in its value occurs in a region where
the analytical approximations for the moments agree
very closely with the values obtained by simulation.
It is concluded that CV « 1 1s netther a necessary
or sufficient condition for the accurate prediction of
the moments by the method of solving the differential

Egs. (9) to (13).

Constant Current with Small Noise:
Intermediate-Time Intervals

3.3.

When 8 is increased, the method of obtaining the mo-
ments from the differential equations may not succeed
for sustained applications of the applied current. This
is seen for 8 = 0.05 in Fig. 5, where the means of
X (t) and Y(¢) are shown determined both by simu-
lation and by solution of the differential equations.
Simulation predicts that the means oscillate with de-
creasing amplitude. Figure 5B shows clearly how
the moment equations yield solutions that become
unstable after only a few, at most, periods. With
[ and B as parameters, it will be of interest to
later consider such behaviors of the solutions of (9)
to (13) using classical analysis of eigenvalues as-
sociated with equilibrium points of the nonlinear
system.
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Figure 3. Estimates of the distribution of X (¢) for various ¢ from the simulation results. Times shown are ¢ = 60 (A) and r = 80 (B). The
distributions are almost symmetric at these small times.




100 Tuckweil and Rodriguez

EARLY MEANS FOR FITZHUGH-NAGUMO
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Figure 4. The means of the two components (shown in A} by the two methods and the variance of the first compogent .(shown in B). Here the
value of 8 is increased to 0.05. Agreement is good between the results of the two methods for the relatively small time u}terval shown.‘ C. The
changes in the magnitude of the coefficient of variation of the first component throughout the time interval when the vanar.lce of X(r) 1s large.
The numerical method is accurate despite the large coefficient of variation of X' (). (Continued on next page.)
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Figure 5. A. The simulation method of determining the means continues to work when the current is sustained. B. The solutions of the moment
equations may break down for a continued application of noisy current. (Continued on next page.)
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34,  The Probabiliry that the Neuron (s Spiking <olutions of the ditferential equations for the moments

As indicated in Section 2, the assumption that the volt-
age variable X (t) and the revovery variable Y (¢) are
approximately jointly Gaussian enables one to estimate
the probability that a neuron is firing if the first- and
second-order moments are known. This estimate 1S
given by Eq. (14). The value of 6 is not as well de-
6ned for the Fitzhugh-Nagumo sysiem as it is in the
Hodgkin-Huxley system, but based on several obser-
vations of spike trains one can ascribe a reasonable
value to the threshold variable &. If X(¢t) > 6 holds,
then it may be stated with a fair degree of certainty
that a spike is in the process of being emitted; the time
of emission of a spike can be taken as that at which
X (1), the voltage variable, Crosses 8 with a positive
derivative.

We give an example of the estimation, by analytical
methods. of the probability Ps(f) that at time ¢ the
seuron is in fact spiking. Here the parameter values

aea=01,b=0015y = 0.2. k = 0.5, 8 = 0.01,
g = 0.6, and [ = 1.5, and we have used the initial
values be X (0) =0, Y(0) = 1.

The results are shown in Fig. 6 for the probability

P, () that the neuron 18 spiking as a function of time,
determined from the formula (14) (solid line) with the

and directly from simulation results (dashed line). For
the simulations the estimate of Py is the fraction of ail
trials with X (¢) > 8. The agreement between the two
sets of results is good. It can be seen that the discre-
pancy Increases <omewhat as a function of time since
the noise was switched on, as the initial conditions
were chosen to be deterministic (same starting point
for X, Y in the simulations, and initial variances and
covariance zero for the differential equation method).
Agreement is expected to be better when the input cur-
rent is sporadic as is more likely with the arrival of
postsynaptic potentials at various locations on the sO-
madendritic surface. This is because, as W€ have seen
.1 Section 3, the analytical method of determining the
moments from the differential Egs. (9)to(13) performs
best when the current 18 1ess sustained when 1ts mean
value is high. Constant sustained currents are not €X-
the usual operation of most CNS neurons.

Tt is known that repetitive activity of some nerve cells
may persist for very long times. The prime examples
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Figure 6. Probability that the neuron is emitting an action potential at time ¢. Solid curve is the value obtained from Eq. (14) using the mean
and variance of X (7) determined from the differential equations. The broken curve is the value estimated from simulations (30 tnals).

are pacemaker cells (for example, Junge and Moore,
1966), but there are mammalian CNS cells that also
have the capability of persistently emitting an almost
periodic train of spikes in response to constant injected
current (Granit, 1970; Calvin and Schwindt, 1972;
Calvin and Sypert, 1976). On the other hand, there are
the classic in vitro experiments in which white noise
was injected directly into a neuron’s soma and spike ac-
tivity was observed (Bryant and Segundo, 1976) or in
which a space-clamped preparation (squid axon) was
driven by white noise (Guttman et al., 1974). In the
latter experiment cross-correlation of input signal and
membrane voltage were determined, and a linearized
analysis was performed. More recently, Mainen and
Seinowski (1995) have injected steady and fluctuating
currents into cortical cells and examined the subse-
quent spike trains. With a constant current the train was
of increasing irregularity as the stimulus duration 1n-
creased. However, the noisy input seemed to evoke, for
the same input current trajectory, an accurately repro-
ducible spike sequence as Bryant and Segundo (1976)
had found earlier for aplysia neurons. In the last three
mentioned experiments, Gaussian white noise was in-
jected directly into a nerve cell so that the model em-
ployed in the present article is of the kind that would

apply to these preparations but especially to the exper-
iment of Guttman et al. Mainen and Sejnowski (1995)
had noticed from intracellular records from neocortical
cells in vitro that the rapid fluctuations in membrane po-
tential due to arriving excitatory and inhibitory postsy-
naptic potentials could be expected to be approximated
by a Gaussian white noise input current and hence per-
formed their current clamp experiments using white-
noise generated input. Using their approach it is possi-
ble to also expect to gain insight into in vivo neuronal
activity in the presence of noisy input currents. In ad-
dition to these possibilities for a comparison of theory
and experiment with noisy nonlinear neuronal models,
there are several experiments where white-noise cur-
rent has been used with the objective of determining
Wiener kernels (e.g., Naka et al., 1985). In this article,
however, attention’is focused on the Fitzhugh-Nagumo
system. In a subsequent paper (Rodriguez and Tuck-
well, 1997) we will report findings using the present
methods for the more complex Hodgkin-Huxley equa-
tions, for which the system (9) to (13) isreplaced by one
of 14 differential equations. We expect these methods,
by comparing experimental trajectories and statistical
properties with the computed ones for the model, to be
useful in obtaining estimates of biophysical constants.
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However, in our premier application of this approach
we wish mainly to investigate the validity of the ana-
lytical approximation method.

Some neurons that fire repetitively exhibit very little
variability in their interspike intervals, and it is natural
to ask how great an input noise a cell may tolerate and
still emit a regular train. To address this question fully
a more complete model is required than a Fitzhugh-
Nagumo model, but we have made some investigations
of this matter with this model as it is a guide for stud-
ies on more complex models and has the advantage of
having only a few parameters as observed by Kurrer

and Schulten {1991) and Longtin (1993).

4.1. Trajectories with Notse

There have been deterministic analyses of the response
of a Fitzhugh-Nagumo neuron and related models un-
der space-clamp conditions, that have elucidated the
conditions for repetitive activity (Troy, 1976; Rinzel
and Keener, 1983). Although there are stability theo-
rems that one may apply to nonlinear stochastic sys-
tems (Gihman and Skorohod, 1972), these usually con-
cern only stochastic boundedness under the nfluence
of small disturbances and do not concern the proper-
ties of the trajectories that relate to repetitive pulselike
solutions.

t

TRAJECTORIES OF X(t) WITH VERY SMALL NOISE

1.51"" ! | i

1.4+

X(t)

~0).4 — 1 S R—

It is of more immediate interest to examine the nature
of the trajectories of the voltage and recovery variables
when there is a sustained current of constant ampli-
tude for various magnitudes of the noise amplitude.
Space limitations prevent an exhaustive study as all
parameters vary over wide ranges so we have cho-
sen a representative set of values for a, 0, v, k, and
/. The values of the first three of these parameters
were as above: the value of the mean current was
] = 1.5, which resulted in sustained periodic activ-
ity in the absence of noise. Figure 7A shows a trajec-
tory; from computer simulation, for the voltage varable
X (t) when there is very little noise with g = 0.01.
This differs very little from the deterministic trajectory
and one can easily distinguish regular pulselike solu-
tions. Indeed, the mean for these parameter values was
given in Fig. 2A and is for short times approximately
periodic.

In Fig. 7B is shown a trajectory when the noise pa-
rameter is increased to 8 = 0.1. This was the same
value of B8 used in Section 3.1 for an intermittent cur-
rent. The sample paths are erratic, but pulselike regular
solutions are distinguishable. However, when the noise
parameter is increased to 8 = 0.5, as in Fig. 7C, where
the phase plane is shown, the paths are very erratic.
Here it is difficult to recognize well defined spikes as
the solutions are so noise-dominated.

I L
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Figure 7. Showing trajectories for various magnitudes of the noise parameter. A. X(z) for 8 = 0.01.
C. Trajectory in the phase plane (X.Y) when the noise parameter is 8 = 0.5.

A

B. Trajectory of X (¢) for 8 = 0.1.
(Continued on next page.)
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4.2. Interspike Intervals

4.2.1. Types of Distributions. If B is not so large
that spikes are practically unidentifiable, one may ob-
tain samples of interspike intervals from computer-
generated sample paths. This was done for the pre-
vious set of parameter values (a=0.1, 6=0.015,
v =0.2, k =0.5) for various values of 8 and /. His-
tograms of interspike intervals, based on 1000 obser-
vations, are shown in Figs. 8A and 8B, for § = 0.01
and 8 = 0.035 respectively. An observation consists
of a threshold crossing with positive derivative in the
voltage variable, which for such small values ot the
parameter 8 were invariably followed by fully devel-
oped spikes. The mean and standard deviation of the
interspike interval are shown on the Figures.

These distributions seem to be approximately Gaus-

sian and resemble closely the form of those for pace-
maker cells (Junge and Moore, 1966). The coefficients
of variation are small as would be expected when the
noise is small and the interspike interval is close to the
period of the oscillations in the absence of noise.

4.2.2. Temporal Homogeneity. Weexamined the dis-
tribution of the first interspike interval in a train and

compared it with the distribution of the twentieth such
interval. For small values of 8 where periodic behav-
ior was clearly discernible, the mean and variance of
the interspike interval were not significantly different.
Thus, even though the mean of X (¢), or the amplitude
of its oscillations may decrease, there is little change
in the interval of time between “‘spikes’.

4.2.3. Effect of Increasing 3 at Fixed I. For very
large values of B the difficulty in recognizing true
spikes means that a histogram of interspike intervals
may become difficult to realize. The model 1s not as
robust in the presence of noise as the more complex
Hodgkin-Huxley model, in the sense that in the latter

spikes are more genuinely “‘all or none” events. Nev- |
ertheless, we have developed automatic methods for
spike identification and hence the determination of In-
terspike intervals using a threshold criterion—that the
voltage variable had to cross a chosen value (6) with
positive d X /dt. The chosen value for 6 = 0.6 for the
set of parameters given above was relatively high in
order to eliminate non spikelike responses (as can be
seen later in Fig. 9A). In Fig. 8C we show plots ot

frequency of spikes against the noise parameter § for
] =0.5,1.0, 1.5, and 2.0. Here frequency 1s defined

HISTOGRAM OF INTERSPIKE INTERVALS! FITZHUGH-NAGUMO
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Figure 8. A and B. Histograms of interspike intervals for the noisy Fitzhugh-Nagumo model for / = 1.5 when(A) f = 0.01 and(B) 8 = 0.035.
In both of these cases, trains of spikes would occur in the absence of noise. C. The changes in mean frequency of action potentials for various
values of the steady current (/) as indicated in the upper right corner key, as the noise parameter increases. There were 1000 threshold crossing

for each pair of parameter values /. 8.

(Continued on next page.)
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Figure 9. Spike trains induced by noise. A. Sample paths for / = 0.1, without noise (solid line) and with noise (dotted line). The trajectory

without noise is a decaying oscillation with one spike at the
a histogram of interspike intervals for a spike train induced

beginning. In contrast, with noise there is a persistent spike train. B, Here is shown
Oy noise——that is, in the absence of noise there was no spike train, the current being

too small (without noise) to give repetitive activity. C. Frec

juency of action potentials versus current for various values of the noise parameter.

Line: no noise. Small diamonds: 8 =0.01. Crosses: 8 =0.05. Squares: 8 =0.1. Note that the frequency is nonzero even for very small or
very large values of the mean current—where no spike trains exist without noise. (Continued on next page.)
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as the reciprocal of the mean interval and is obtained
from 1000 threshold crossings of trajectories of X (¢).

It can be seen that in the range of noise parameters
considered, there is a gentle increase in firing rate as the
noise grows in amplitude. Furthermore, when [ 1s very
small or very large (outside the Hopf bifurcation val-
ues, which are about [ =0.3 and I =3.3), spike train
formation does not commence until the noise parameter
is large enough (see below).

4.2.4. Noise-Induced Spikes. When repetitive activ-
ity does not occur for a given value of the input current
I, a spike train of a persistent nature can be induced
if the noise is large enough (Longtin, 1993). This 1s
shown graphically in Fig. 9A. Here the parameters are
such that without noise a single spike is emitted, but
this is followed by a decaying oscillation. This 1s be-
cause the current is / = 0.1, and this 1s less than the
critical value of I at the lower bifurcation point. On the
other hand, introducing noise with 8 =0.1 gives rise to
a persistent, though not extremely regular, spike train.

In Fig. 9B is shown an interspike interval histogram
for a small current where there is no spike train without

noise, but a spike train persists in the presence of (zero
mean) additive noise (8 = 0.1). It can be seen, as
expected, that this distribution is of high variability,
the coefficient of variation of the interspike interval
being 0.56.

4.2.5. Regions of Repetitive Activity. 'The existence
of Hopf bifurcations at critical currents leading to repet-
itive activity in the Fitzhugh-Nagumo model 1s well
known. We show a representative case in Fig. 9C. In
addition we show the mean frequency of spikes in spike
trains with noise and constant current. This supple-
ments Fig. 8C. The extension in the ranges of /-values
at which repetitive, though not periodic, spiking occurs
as induced by noise can be clearly seen.

5. FExtension of the Method to Neural Networks

We indicate briefly a direction for future research by
considering a model neural network in which each of n
neurons is represented by two components, X () and
Yi(t), being for example voltage and recovery variables
as in the Fitzhugh-Nagumo system. In general, this
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leads to a system of 2n coupled nonlinear stochastic It is important to be able to implement learning rules
differential equations of the form in which synaptic strengths may depend on the activ-
ities of the various cells in the network (see, for ex-

— L

- ample, Levy and Desmond, 1985). Often Cajal-Hebb

aXj=|g(X;, 1;)+ 1;{1) + Z k0 (Xi) | dt type rules are used, which lead to the strengthening of

- o= - a synapse If there 1s positive correlation between pre-

+BiaW;, (15) and postsynaptic activity. These rules are easy to ap-

dY; = h(X;, Y;)dt. (16) ply if a sample of trajectories is available because one

can then estimate the covariance of the frequencies of

Here {J;x} 1s a set of possibly vanable synaptic firing, f: (1), fi(2), of cells i, k, and the correspond-

strengths for coupling between neuron £ and neuron ing standard deviations o, (1), oz (). Then §J; can

j, 8(.) 1s a threshold function, I;(¢) 1s the applied cur- be assumed to be proportional to Cov[ f;, fil/o s 0 dt.

rent for neuron j, W;, j = 1,2, ..., n are Wiener pro- However, the present approach does not yield the re-

cesses, and f; are the corresponding noise parameters quired statistical properties of the frequencies so that

that may be time-dependent. The extension of the ana- such rules are not readily or directly applicable. How-

fytical approach to such network models 1s described 1n ever, an alternative 1s to use, for example, a rule of the
Appendix C, where differential equations for the evo- kind

lution of the approximate means and covariances are
oiven, 5 = (P + P)'[1 — 2P — P 161, (18)

With a knowledge of the first- and second-order mo- |
ments, under the assumption that the network dynami- with 7 > | and where o 1s a constant characterizing

cal variables are jointly Gaussian distributed, which 1s the synapse. Such a rule can be implemented directly
expected to be approximately true for intermittent stim- because P; and Py can be obtained as outlined above,
ulation (see Section 3.1) and relatively small {§;}, the fori, k = 1,...,n. This gives a maximum value when
complete probability distribution of the entire system P; = P, = | and a minimum in the event that either
of network variables can be obtained at any time point. of P; or Py is unity and the other zero. It is possible

(This is not an assumption that the whole network pro- also to implement rules in terms of the P;(z) that 1s
cess 1s Gaussian.) This 1s because the covariance ma- the joint probability that pre- and postsynaptic neurons
trix and the means are sufficient to totally describe such are firing at time ¢, since P (¢) can also be obtained,
a distribution. In particular, the joint probability that with the assumptions underlying the present approach,
the voltage variables of various combinations of neu- from the expression for a bivariate normal distribution.

rons are above threshold and therefore that this set 1s
spiking is easily obtained.

In particular, let P, (¢; &;) be the probability that neu- 6. Conclusions
ron k is firing at time ¢ in the sense that its voltage 1s
above its threshold value 8;. Then by the same reason-
ing as used to derive Eq. (14) 1n the case of a single
neuron, we have the approximation

Modeling neuronal behavior with stochastic Fitzhugh-
Nagumo systems offers the advantage that 1t 1s simpler
with far fewer parameters than more complex conduc-
tance based models such as Hodgkin-Huxley. In such
my(t) — Gy a framework we have applied an analytical method for

Pe(t;00) =1 — | — - (A7) investigati | activity in th f noi
m investigating neuronal activity in the presence of noise.
The method consists of solving a system of associ-

Again, however, although it seems that this estimate ated nonlinear differential equations for the moments
only requires a knowledge of the two quantities my (¢) of the voltage and subsidiary variables. We have 1llus-
and S (1), the whole system of n(2n + 3) equations for trated this using the first- and second-order moments
the first- and second-order moments must be solved 1n for a Fitzhugh-Nagumo neuron with an input that has a
order to find them. Note that P (¢; &;) 1s the probability time-varying steady component and an additional noisy
that neuron £ is firing, regardless of the states of all the component. Simulations may be readily performed for
other neurons. Similarly one can obtain an expression such systems, but the results by their very nature are a
for the probability P;,,..; (¢), where 1 < m < n, that sample whereas an analytical framework can provide

the set iy, i, ..., I, of neurons are firing. accurate and more general insights. We have found




that the analytical method works very well when either
the noise is small and there is a sustained determin-
istic component, or if the deterministic component 1S
intermittent and the noise amplitude varies over a large
range. The latter situation is appropriate for many neu-
ronal systems in their natural modes of operation, and
it is noted that there is no restriction to a temporally
homogeneous input.

We have demonstrated that not only can one use the
analytical approach to determine the moments of the
neuronal dynamical variables, but also an analytical
estimate can be made of the probability that a neu-
ron is emitting a spike at any given time. We have
also provided a framework for the application of the
analytical method to networks where the probabulity
of a given configuration of neuronal spike patterns
can be readily determined and indicated an appropri-
ate new learning rule which can be applied directly in
the present approach. In simulation studies we have
confirmed and elaborated on previous (Longtin, 1993)
findings of extended ranges of spiking in the presence
of noise and that interspike interval distributions have
a Gaussian form for spike-inducing inputs with small
relative variability and gammalike (including exponen-
tial) for those with greater variability as in the case of
noise-induced spikes.

Appendix A

In order to derive the differential equations for the mo-
ments we introduce the transition probability density
function p(x,y,t | Xo, Yo, 0) for the process (X, ¥)
and we assume (Jazwinski, 1970) that p(x, y,? |
Xo, Yo, 0) 18 symmetric about the mean (i1, iL7) and
that its mass is concentrated close to this point. Un-
der these assumptions the odd central moments of or-
der three and greater and even central moments of order
greater than two may be neglected. These assumptions
will be seen to be justified by virtue of their giving,
for certain parameter values, estimates of the moments
that agree well with those obtained by simulation and
from examination of empirical distributions.

We use the following result to obtain the required
differential equations. Let G(X(2), Y (), ¢) be a suit-
able function of X (¢) and Y (¢) and possibly the time,
t. Its mean is defined as the double integral

E[G(X(t),Y(2),1)]
=f [ Gix,v,)p(x,y, t)ydxdy,
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where we have omitted reference to the initial con-

ditions. We now expand the transition density p in a
Taylor series about the mean and utilize the assumed
properties of symmetry and tightness about the mean
and the definitions of first- and second-order moments
to obtain

E[G(X, Y, 0)]=C(uy, 12, 1) + %_-Gx.r(ﬂl , U2, 1)S)
+ 3G yy (1, 2, £)S2
+ny(ﬂhﬂ?_,f)clz+ " (Al)

where subscripts x and y denote partial differentia-
tion with respect to the first and second arguments
of G.

Appendix B

We wish to estimate the probability Py (¢) that the neu-
ron is emitting an action potential at time ¢—that 1s,
it is in the procéss of emitting a spike. This 1s tO
be distinguished from the probability distribution of
the interspike interval. Assuming that X (f) and Y (1)
are approximately jointly normally distributed, one has
their joint distribution because their means, variances,
and covariance are known. Then the probability that
the voltage variable X () is greater than some thresh-
old value # no matter what the value ot the recovery
variable 1s

}

Py(t) = PriX () >0, Y (1) € (—0oQ, o0) b

Using the expression for the bivariate normal density
this is given by the expression

1 o 1
= — e [T [ enp| -
Cr
21,/ 815 = Cy 78 2(1 - %)

.
(xy —myp)~ 201(x — m})(l’z — m3)

S S197

42— = U dxpdx. (A2)

However, since we are integrating over all values of
the recovery variable, we obtain the marginal distri-
bution of the voltage variable and this can be shown
by direct, fairly long calculation to have an exact one-
dimensional normal distribution (see also Wilks, 1962)
with mean m,(¢) and variance S (). Hence the quan-
tity in (A2) is as given in Eq. (14) of the text.



112 Tuckwell and Rodriguez

L

Appendix C

We consider a neural network model as described by
Egs. (15) and (16). On renaming the 2n variables as
Uj = Xj,Uj_;.n = Yj,j = 1,...,71, the syst€m may
be written

de = g(U, Uj-{—n)‘l‘]j(t)“]‘zjjk@(Uk) dt
3 k=1 |
+B;dW, (A3)
de—Hl — h(Uja-Uj-i-n)dta (A4)
where again j=1,2,...,n. Then using the meth-

ods in our previous article (Rodriguez and Tuckwell,
1996) it follows that the following differen-
tial equations hold for the approximate means
m;(t)y=E[X;@)], ;=1 2. ..., n of the voltage vari-
ables and m; ., () =E[Y;(1)], j=1,2,...,n of the
recovery variables of the n Fitzhugh-Nagumo neurons:

dmj—
— = f(m;)—mjn+ 1;(2)
;
+ > Jpfm) + ) I (mi) S, (AS)
k=1 k=]
and
dmj+n
0 :b(mj ""}"mj-i-n)a (AD)

where j = 1,2, ..., n, S (1) 18 the variance of X.(#),
and 8” is the second derivative ot 5.

We also have the differential equations satisfied by
the second-order moments for each network neuronal
variable. We define the covariance of U;(t) and U(?)
as C (). Then we have, forl < j <1 <n,

dCi; , ,,
= (f'(m;)+ f(m;))Ci; — Cr’—i—ﬂr‘j

= Cijen+ B] + B;- (AT)

Whenn+1<i<2n,1<j<n,wehave

dcn—i-::;«'j
dt

=(f'(m;) = by)Cniq.j — Cniqun+
+bCy; -+ Z 0" (mi) Jek Crtg (A3)
k=1

whereas whenn < j < i < 2n, the covariances satisty

dc_'n-i-q.n-l-r
dt

= b(cq.n-i-r + Cn+q,r) _' 2b}/cn+q.n+rr
(A9)

where ¢ and r range from I, ..., n.

In particular, the following differential equations.for
the variances are obtained:

?-:S‘—i = Z[f’(m-)S- — Cijan T ,52] ;= 1 n
dt t /e .f+4n [ 1 ICECICIE A S
(A10)
and
ds,
d:_q =2b[cq‘n+q _}/Sﬂ‘*‘Q]: q =1,...,1.
(All)
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